分析:(1)令n=1,由S
n=2a
n-2n可得a
1=2,再由s
n+1=2a
n+1-2(n+1),相減后化簡(jiǎn)可得 a
n+1+2=2(a
n +2 ),可得數(shù)列{a
n+2}是以4為首項(xiàng),以2為公比的等比數(shù)列.
(2)由(1)知,a
n +2=4×2
n-1,由此求得b
n=n+1,故
=
=
,再用錯(cuò)位相減法求出數(shù)列
{}的前n項(xiàng)和T
n的值,從而得出結(jié)論.
解答:解:(1)令n=1,由S
n=2a
n-2n可得a
1=2.
再由S
n=2a
n-2n(n∈N
+),可得 s
n+1=2a
n+1-2(n+1),
∴s
n+1-S
n =2a
n+1-2a
n-2,即 a
n+1=2a
n +2,故有 a
n+1+2=2(a
n +2 ),
故數(shù)列{a
n+2}是以4為首項(xiàng),以2為公比的等比數(shù)列.
(2)由(1)知,a
n +2=4×2
n-1,∴b
n=log
2(a
n+2)=log
2(4×2
n-1 )=n+1,
∴
=
=
.
∴數(shù)列
{}的前n項(xiàng)和T
n=
+
+
+…+
①,
∴
T
n=
+
+
+…+
②,
①-②可得
T
n=
+
+
+…+
-
=
+
-
=
+
,
故T
n=
+
,顯然滿足
Tn≥.
點(diǎn)評(píng):本題主要考查等比關(guān)系的確定,用錯(cuò)位相減法進(jìn)行數(shù)列求和,屬于中檔題.