精英家教網 > 高中數學 > 題目詳情

已知

(1)求數列{}的通項公式
(2)數列{}的首項b1=1,前n項和為Tn,且,求數列{}
的通項公式.

(1);(2)。

解析試題分析:(1)由題意知       ………………2分

是等差數列.…………………………4分
………5分
       ………………………………6分
(2)由題設知

是等差數列.    …………………………………8分

…………………………10分
∴當n=1時,;

經驗證n=1時也適合上式.    ……………12分
考點:等差數列的定義;通項公式的求法;
點評:在求數列的通項公式時,常用的一種方法是構造新數列,通過構造的新數列是等差數列或等比數列來求。比如此題,要求數列{}的通項公式我們構造了數列是等差數列。想求的通項公式,構造了是等差數列。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知等比數列的首項,公比,數列項的積記為.
(1)求使得取得最大值時的值;
(2)證明中的任意相鄰三項按從小到大排列,總可以使其成等差數列,如果所有這些等差數列的公差按從小到大的順序依次設為,證明:數列為等比數列.
(參考數據

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{}滿足
(1)求證:數列{}是等比數列。
(2)求的表達式。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足:
(1)求證:數列為等比數列;
(2)求證:數列為遞增數列;
(3)若當且僅當的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

各項均為正數的等比數列,,單調增數列的前項和為,,且).
(Ⅰ)求數列的通項公式;
(Ⅱ)令),求使得的所有的值,并說明理由.
(Ⅲ) 證明中任意三項不可能構成等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)在等比數列中,,
(1)求出公比                           (2)求出

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知等差數列的公差,設,

(Ⅰ)若 ,求數列的通項公式;
(Ⅱ)若,且成等比數列,求的值;
(Ⅲ)若,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

等差數列的前n項和記為,已知 .
(1)求通項
(2)若=242,求n。

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

在數列{an}中,a1=1,an+1-an=n(n∈N*),則a100的值為(  )

A.5 050 B.5 051 C.4 950 D.4 951

查看答案和解析>>

同步練習冊答案