【題目】如圖,在四棱錐中,平面,,底面是梯形,,,,為棱上一點.
(1)若點為的中點,證明:平面.
(2) ,試確定的值使得二面角的大小為.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接,,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;
(2)先由題意得到,,兩兩垂直,以為原點,,,所在直線為軸,軸,軸,建立空間直角坐標系,設,根據(jù),求出,分別求出平面與平面的一個法向量,根據(jù)向量夾角公式,以及二面角的大小,即可求出結(jié)果.
(1)如圖,取的中點,連接,.
∵點為的中點,∴,.
又,,
∴,,∴四邊形是平行四邊形.∴.
又平面,平面,∴平面.
(2)由平面,,可得,,兩兩垂直,以為原點,,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標系,則,,,,.
設,則,.
∵,∴∴.
又易證平面,
∴是平面的一個法向量.
設平面的法向量為,
則即,解得
令,則.
∵二面角的大小為,
∴|,
解得:.
∵點在棱上,∴,∴
科目:高中數(shù)學 來源: 題型:
【題目】以下統(tǒng)計表和分布圖取自《清華大學2019年畢業(yè)生就業(yè)質(zhì)量報告》.
則下列選項錯誤的是( )
A.清華大學2019年畢業(yè)生中,大多數(shù)本科生選擇繼續(xù)深造,大多數(shù)碩士生選擇就業(yè)
B.清華大學2019年畢業(yè)生中,碩士生的就業(yè)率比本科生高
C.清華大學2019年簽三方就業(yè)的畢業(yè)生中,本科生的就業(yè)城市比碩士生的就業(yè)城市分散
D.清華大學2019年簽三方就業(yè)的畢業(yè)生中,留北京人數(shù)超過一半
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求的方程;
(2)是否存在直線與相交于兩點,且滿足:①與(為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年1月10日,中國工程院院士黃旭華和中國科學院院士曾慶存榮獲2019年度國家最高科學技術獎.曾慶存院士是國際數(shù)值天氣預報奠基人之一,他的算法是世界數(shù)值天氣預報核心技術的基礎,在氣象預報中,過往的統(tǒng)計數(shù)據(jù)至關重要,如圖是根據(jù)甲地過去50年的氣象記錄所繪制的每年高溫天數(shù)(若某天氣溫達到35 ℃及以上,則稱之為高溫天)的頻率分布直方圖.若某年的高溫天達到15天及以上,則稱該年為高溫年,假設每年是否為高溫年相互獨立,以這50年中每年高溫天數(shù)的頻率作為今后每年是否為高溫年的概率.
(1)求今后4年中,甲地至少有3年為高溫年的概率.
(2)某同學在位于甲地的大學里勤工儉學,成為了校內(nèi)奶茶店(消費區(qū)在戶外)的店長,為了減少高溫年帶來的損失,該同學現(xiàn)在有兩種方案選擇:方案一:不購買遮陽傘,一旦某年為高溫年,則預計當年的收入會減少6000元;方案二:購買一些遮陽傘,費用為5000元,可使用4年,一旦某年為高溫年,則預計當年的收入會增加1000元.以4年為期,試分析該同學是否應該購買遮陽傘?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,E是以AB為直徑的半圓O上異于A、B的點,矩形ABCD所在的平面垂直于半圓O所在的平面,且AB=2AD=2.
(1)求證:;
(2)若異面直線AE和DC所成的角為,求平面DCE與平面AEB所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將某公司200天的日銷售收入(單位:萬元)統(tǒng)計如下表(1)所示,
日銷售收入 | ||||||
頻數(shù) | 12 | 28 | 36 | 54 | 50 | 20 |
頻率 |
表(1)
(1)完成上述頻率分布表,并估計公司這200天的日均銷售收入(同一組中的數(shù)據(jù)用該組所在區(qū)間的中點值代表);
(2)已知該公司2020年第一、二季度的日銷售收入如下表(2)所示,第三季度的日銷售收入及其頻率可用表(1)中的數(shù)據(jù)近似代替,且在2020年,當公司日銷售收入為時,員工的日績效為100元,當公司日銷售收入為時,員工的日績效為200元,當公司日銷售收入為時,員工的日績效為300元.以頻率估計概率.
①若在第三季度某員工的工作日中隨機抽取2天,記該員工2天的績效之和為,求的分布列以及數(shù)學期望;
②若每個員工每個季度的工作日為50天,估計2020年前三個季度每個員工獲得的績效的總額.
日銷售收入 | ||||||
頻率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com