【題目】如圖,E是以AB為直徑的半圓O上異于AB的點(diǎn),矩形ABCD所在的平面垂直于半圓O所在的平面,且AB=2AD=2.

1)求證:;

2)若異面直線AEDC所成的角為,求平面DCE與平面AEB所成的銳二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

(1) 由面面垂直的性質(zhì)可證得.再線面垂直的判定定理和性質(zhì)定理可得證;

(2)以點(diǎn)為坐標(biāo)原點(diǎn),所在的直線為軸,過點(diǎn)平行的直線為軸,建立空間直角坐標(biāo)系.由二面角的向量求解方法可求得平面DCE與平面AEB所成的銳二面角的余弦值.

(1) ∵平面垂直于圓所在的平面,

兩平面的交線為平面,

垂直于圓所在的平面.在圓所在的平面內(nèi),

.是直角,∴

,∴平面

.

(2)如圖, 以點(diǎn)為坐標(biāo)原點(diǎn),所在的直線為軸,

過點(diǎn)平行的直線為軸,建立空間直角坐標(biāo)系.

由異面直線所成的角為,,

,

,由題設(shè)可知 ,,

,.

設(shè)平面的一個法向量為,

,即

,,取,得.

.又平面的一個法向量為,

.

平面與平面所成的銳二面角的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記數(shù)列的前項(xiàng)和為,若存在實(shí)數(shù)H,使得對任意的,都有,則稱數(shù)列為“和有界數(shù)列”.下列說法正確的是(

A.是等差數(shù)列,且公差,則是“和有界數(shù)列”

B.是等差數(shù)列,且是“和有界數(shù)列”,則公差

C.是等比數(shù)列,且公比,則是“和有界數(shù)列”

D.是等比數(shù)列,且是“和有界數(shù)列”,則的公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,底面是梯形,,,,為棱上一點(diǎn).

(1)若點(diǎn)的中點(diǎn),證明:平面.

(2) ,試確定的值使得二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,,,,D的中點(diǎn).

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中e是自然對數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結(jié)果,并求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】騰飛中學(xué)學(xué)生積極參加科技創(chuàng)新大賽,在市級組織的大賽中屢創(chuàng)佳績.為了組織學(xué)生參加下一屆市級大賽,了解學(xué)生報名參加社會科學(xué)類比賽(以下稱為A類比賽)和自然科學(xué)類比賽(以下稱為B類比賽)的意向,校團(tuán)委隨機(jī)調(diào)查了60名男生和40名女生調(diào)查結(jié)果如下:60名男生中,15名不準(zhǔn)備參加比賽,5名準(zhǔn)備參加A類比賽和B類比賽,剩余的男生有準(zhǔn)備參加A類比賽,準(zhǔn)備參加B類比賽,40名女生中,10名不準(zhǔn)備參加比賽,25名準(zhǔn)備參加A類比賽,5名準(zhǔn)備參加B類比賽.

1)根據(jù)統(tǒng)計數(shù)據(jù),完成如2×2列聯(lián)表(A類比賽和B類比賽都參加的學(xué)生需重復(fù)統(tǒng)計):

A類比賽

B類比賽

總計

男生

女生

總計

2)能否有99%的把握認(rèn)為學(xué)生參加A類比賽或B類比賽與性別有關(guān)?

附:K2.

PK2k

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠疫情發(fā)生后,酒精使用量大增,某生產(chǎn)企業(yè)調(diào)整設(shè)備,全力生產(chǎn)兩種不同濃度的酒精,按照計劃可知在一個月內(nèi),酒精日產(chǎn)量(單位:噸)與時間n()成等差數(shù)列,且,.又知酒精日產(chǎn)量所占比重與時間n成等比數(shù)列,酒精日產(chǎn)量所占比重與時間n的關(guān)系如下表():

酒精日產(chǎn)量所占比重

……

時間n

1

2

3

……

1)求,的通項(xiàng)公式;

2)若,求前n酒精的總生產(chǎn)量(單位:噸,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案