【題目】(本題滿分12分)已知函數(shù)(R).
(1)當取什么值時,函數(shù)取得最大值,并求其最大值;
(2)若為銳角,且,求的值.
【答案】(本小題主要考查三角函數(shù)性質(zhì), 同角三角函數(shù)的基本關(guān)系、兩倍角公式等知識, 考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法和運算求解能力)
(1) 解:
…… 1分
…… 2分
. …… 3分
∴當,即Z時,函數(shù)取得最大值,其值為.
…… 5分
(2)解法1:∵, ∴. …… 6分
∴. …… 7分
∵為銳角,即, ∴.
∴. …… 8分
∴. …… 9分
∴. …… 10分
∴.
∴.
∴或(不合題意,舍去) …… 11分
∴. …… 12分
解法2: ∵, ∴.
∴. …… 7分
∴. …… 8分
∵為銳角,即,
∴. …… 9分
∴. …… 10分
∴. …… 12分
解法3:∵, ∴.
∴. …… 7分
∵為銳角,即, ∴.
∴. …… 8分
∴…… 9分
…… 10分
. …… 12分
【解析】
(1)由倍角公式,輔助角公式,化簡f(x),利用三角函數(shù)的圖像和性質(zhì)即可得解.
(2)把代入f(x)的解析式得f()的解析式,可求得,進而求得.
(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x,
,
.
∴當,即Z)時,函數(shù)f(x)取得最大值,其值為.
(2)∵,∴.
∴.
∵θ為銳角,
∴.
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機器的同時購買的易損零件數(shù).
(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點P( , )在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)不過原點O且斜率為 的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,
證明:︳MA︳︳MB︳=︳MC︳︳MD︳
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)=ax2+x.
(Ⅰ)當a>0時,求證:對任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)當x∈[0,2]時,|f(x)|≤1恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若a=,點p(m,n2)(m∈Z,n∈Z)是函數(shù)y=f(x)圖象上的點,求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長均相等的正四棱錐P-ABCD中,O為底面正方形的重心,M,N分別為側(cè)棱PA,PB的中點,有下列結(jié)論:
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直線PD與直線MN所成角的大小為90°.
其中正確結(jié)論的序號是______.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x 2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標;
(2)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是圓柱OO′的軸截面,點P在圓柱OO′的底面圓周上,圓柱OO′的底面圓的半徑OA=1,側(cè)面積為2π,∠AOP=60°.
(1)求證:PB⊥平面APD;
(2)是否存在點G在PD上,使得AG⊥BD;并說明理由.
(3)求三棱錐D-AGB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,,分別為橢圓的左、右焦點,過的直線與相交于、兩點,的周長為.
(1)求橢圓的方程;
(2)若橢圓上存在點,使得四邊形為平行四邊形,求此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com