【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
【答案】(1)(1,3);(2) .
【解析】
(1)設(shè)t=2x,利用f(x)>16﹣9×2x,轉(zhuǎn)化不等式為二次不等式,求解即可;
(2)利用函數(shù)的奇偶性以及函數(shù)恒成立,結(jié)合對勾函數(shù)的圖象與性質(zhì)求解函數(shù)的最值,推出結(jié)果.
解:(1)設(shè)t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,
即t2﹣10t+16<0
∴2<t<8,即2<2x<8,∴1<x<3
∴不等式的解集為(1,3).
(2) 由題意得
解得.
2ag(x)+h(2x)≥0,即,對任意x∈[1,2]恒成立,
又x∈[1,2]時,令,
在上單調(diào)遞增,
當時,有最大值,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)滿足,,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設(shè),求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為菱形,,Q是AD的中點.
(Ⅰ)若,求證:平面PQB平面PAD;
(Ⅱ)若平面APD平面ABCD,且,點M在線段PC上,試確定點M的位置,使二面角的大小為,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個不同零點,求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個不同零點的必要而不充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述:
①化簡的結(jié)果為﹣.
②函數(shù)y=在(﹣∞,﹣1)和(﹣1,+∞)上是減函數(shù);
③函數(shù)y=log3x+x2﹣2在定義域內(nèi)只有一個零點;
④定義域內(nèi)任意兩個變量x1,x2,都有,則f(x)在定義域內(nèi)是增函數(shù).
其中正確的結(jié)論序號是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點.求證:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差數(shù)列,求數(shù)列{an}的通項公式;
(2)設(shè)雙曲線x2﹣ =1的離心率為en , 且e2=2,求e12+e22+…+en2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知函數(shù)(R).
(1)當取什么值時,函數(shù)取得最大值,并求其最大值;
(2)若為銳角,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知, (其中是自然對數(shù)的底數(shù)), 求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com