已知數(shù)列是首項(xiàng)的等比數(shù)列,其前項(xiàng)和中,、、成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列{}的前項(xiàng)和為;

(3)求滿足的最大正整數(shù)的值.

 

【答案】

(1)

(2)

(3)最大正整數(shù)的值為.

【解析】

試題分析:解:(1)若,則,,,顯然,,不構(gòu)成等差數(shù)列,

故由,成等差數(shù)列得:       2分

 ,

,∴.                            4分

。                       5分

(2)∵ 

7分

∴       

  

 .                              9分

(3)

             

                   11分

.                                 13分

,解得:.        

故滿足條件的最大正整數(shù)的值為.                   14分

說(shuō)明:以上各題只給出一種解(證)法,若還有其他解(證)法,請(qǐng)酌情給分。

考點(diǎn):數(shù)列的通項(xiàng)公式以及求和

點(diǎn)評(píng):主要是考查了數(shù)列的求和以及數(shù)列的通項(xiàng)公式的求解,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列一些說(shuō)法:
(1)已知△ABC中,acosB=bcosA,則△ABC為等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,則△ABC為等腰或直角三角形.
(3)已知數(shù)列{an}滿足
a
2
n+1
a
2
n
=p(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”.若數(shù)列{an}是等方比數(shù)列則數(shù)列{an}必是等比數(shù)列.
(4)等比數(shù)列{an}的前3項(xiàng)的和等于首項(xiàng)的3倍,則該等比數(shù)列的公比為-2.
其中正確的說(shuō)法的序號(hào)依次是
(2)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知數(shù)列是首項(xiàng)a且公比q不等于1的等比數(shù)列,是其前n項(xiàng)和,成等差數(shù)列.

(1)證明成等比數(shù);

(2)求和:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市高三第三次調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比

數(shù)列.

(1)若,,求數(shù)列的前項(xiàng)和;

(2)若存在正整數(shù),使得.試比較的大小,并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為4,公差d≠0的等差數(shù)列,記前n項(xiàng)和為Sn,若S3S4的等比中項(xiàng)為S5.

(1)求{an}的通項(xiàng)an;

(2)求使Sn>0的最大值n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省唐山市高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列一些說(shuō)法:
(1)已知△ABC中,acosB=bcosA,則△ABC為等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,則△ABC為等腰或直角三角形.
(3)已知數(shù)列{an}滿足=p(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”.若數(shù)列{an}是等方比數(shù)列則數(shù)列{an}必是等比數(shù)列.
(4)等比數(shù)列{an}的前3項(xiàng)的和等于首項(xiàng)的3倍,則該等比數(shù)列的公比為-2.
其中正確的說(shuō)法的序號(hào)依次是   

查看答案和解析>>

同步練習(xí)冊(cè)答案