已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比
數(shù)列.
(1)若,,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得.試比較與的大小,并說明理由.
(1) ;(2) 當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
【解析】
試題分析:(1)利用基本量思想求解兩個(gè)數(shù)列的通項(xiàng)公式,然后才有錯(cuò)位相減法求解數(shù)列的前項(xiàng)和;(2)利用等量關(guān)系關(guān)系,減少公差d,進(jìn)而將與進(jìn)行表示,然后才有作差比較進(jìn)行分析,注意分類討論思想的應(yīng)用.
試題解析:(1)依題意,,
故,
所以, 3分
令, ①
則, ②
①②得,,
,
所以. 7分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092000340391402577/SYS201309200034513045489991_DA.files/image010.png">,
所以,即,
故,
又, 9分
所以
11分
(。┊(dāng)時(shí),由知
, 13分
(ⅱ)當(dāng)時(shí),由知
,
綜上所述,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),. 16分
(注:僅給出“時(shí),;時(shí),”得2分.)
方法二:(注意到數(shù)列的函數(shù)特征,運(yùn)用函數(shù)性質(zhì)求解)
(易知),
令,有,,
令,則.記.
若,則在上,函數(shù)在上為單調(diào)增函數(shù),則,
這與相矛盾;
若,則在上,函數(shù)在上為單調(diào)減函數(shù),則,
這與相矛盾;
所以,.
故在上,函數(shù)在上為單調(diào)減函數(shù),
在上,函數(shù)在上為單調(diào)增函數(shù).
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092000340391402577/SYS201309200034513045489991_DA.files/image041.png">,所以,當(dāng)時(shí),,當(dāng)時(shí),,
所以,當(dāng)時(shí),,即,
當(dāng)時(shí),,即,
綜上所述,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
考點(diǎn):1.等差和等比數(shù)列的通項(xiàng)公式;2.數(shù)列求和;3.大小比較.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知數(shù)列是首項(xiàng)為1公差為正的等差數(shù)列,數(shù)列是首項(xiàng)為1的等比數(shù)列,設(shè),且數(shù)列的前三項(xiàng)依次為1,4,12,
(1)求數(shù)列、的通項(xiàng)公式;
(2)若等差數(shù)列的前n項(xiàng)和為Sn,求數(shù)列的前項(xiàng)的和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年寧夏銀川一中高二上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且公差不為零,而等比數(shù)列的前三項(xiàng)分別是。
(1)求數(shù)列的通項(xiàng)公式
(2) )若,求正整數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆黑龍江省哈九中高三上學(xué)期12月月考理科數(shù)學(xué)卷 題型:解答題
(10分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且,若成等比數(shù)列,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省日照市高三12月校際聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列的前n項(xiàng)和.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè), 求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且, 若
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com