【題目】在暑假社會實踐活動中,靜靜同學(xué)為了研究日最高氣溫對某家奶茶店的A品牌冷飲銷量的影響,統(tǒng)計得到711日至15日該奶茶店A品牌冷飲的日銷量y(杯)與當(dāng)日最高氣溫x(℃)的對比表:

日期

711

712

713

714

715

最高氣溫x(℃)

31

33

32

34

35

銷量y(杯)

55

58

60

63

64

1)由以上數(shù)據(jù)求出y關(guān)于x的線性回歸方程, 若天氣預(yù)報717日的最高氣溫為37℃,請預(yù)測當(dāng)天該奶茶店A品牌冷飲的銷量(取整數(shù));

2)從這5天中任選2天,求選出的2天最高氣溫都達(dá)到33℃以上(含33℃)的概率.參考公式及參考數(shù)據(jù)如下:

,

【答案】(1) ,大約是69;(2)

【解析】

(1) 先由圖表來計算出,然后求出,從而求出線性回歸方程,再令,預(yù)測當(dāng)天該奶茶店A品牌冷飲的銷量;

2)列出符合條件的基本事件,根據(jù)概率公式計算即可得出結(jié)果.

1)由表格中數(shù)據(jù)可得,,

,,

所以y關(guān)于x的線性回歸方程為:,當(dāng)時,,當(dāng)天該奶茶店A品牌冷飲的銷量大約是69.

(2)從這5天中任選2天,最高氣溫構(gòu)成的基本事件有:共有10個基本事件,

其中2天最高氣溫都達(dá)到33℃以上(含33℃)包括3個基本事件,

故概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)若的交于點,交于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,,E,F分別為AD,PC的中點.

求證:平面BEF;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,為自然對數(shù)的底數(shù),).

(1)若,求函數(shù)的單調(diào)區(qū)間

(2)證明:當(dāng),函數(shù)有兩個零點,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的極值;

2)若函數(shù)在區(qū)間上的最小值是4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:的離心率為,其右焦點到橢圓C外一點的距離為,不過原點O的直線l與橢圓C相交于A,B兩點,且線段AB的長度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)取得極值,求的值并判斷是極大值點還是極小值點;

2)當(dāng)函數(shù)有兩個極值點,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,的中點,點在平面內(nèi)的射影在線段上.

(1)求證:

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】法國有個名人叫做布萊爾·帕斯卡,他認(rèn)識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設(shè)每局兩賭徒輸贏的概率各占,每局輸贏相互獨立,那么這700法郎如何分配比較合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

同步練習(xí)冊答案