已知橢圓:的一個焦點為且過點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點分別為A1,A2,P是橢圓上異于A1,A2的任一點,直線PA1,PA2分別交軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.
證明:線段OT的長為定值,并求出該定值.
(Ⅰ).(Ⅱ)線段的長為定值.
【解析】
試題分析:(Ⅰ) 由題意得,,解得,
所以橢圓的方程為.
(Ⅱ)由(Ⅰ)可知,設(shè),其中,
直線:,令,得;
直線:,令,得.
設(shè)圓的圓心為,半徑為,
則,
,
而,所以,所以,
所以,即線段的長為定值.
考點:本題考查了橢圓方程的求法及直線與橢圓的位置關(guān)系
點評::從近幾年課標(biāo)地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關(guān)系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關(guān)系同本部分知識的結(jié)合,將逐步成為今后命題的一種趨勢
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
a2+b2 |
2 |
3 |
AB |
AD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
a2+b2 |
2 |
3 |
AB |
AD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
PF |
FQ |
MF |
FN |
PF |
FM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點是橢圓C的“準(zhǔn)圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com