(本小題滿分15分)

給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為

(1)求橢圓C和其“準(zhǔn)圓”的方程;

(2)若點是橢圓C的“準(zhǔn)圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;

(3)在橢圓C的“準(zhǔn)圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

 

【答案】

(1).(2).(3)對于橢圓上的任意點,都有

【解析】

試題分析:(1)由題意知,且,可得,

故橢圓C的方程為,其“準(zhǔn)圓”方程為.  

(2)由題意,可設(shè),則有

又A點坐標(biāo)為,故

,                  

,故,

所以的取值范圍是.               

(3)設(shè),則

當(dāng)時,,則其中之一斜率不存在,另一斜率為0,顯然有

當(dāng)時,設(shè)過且與橢圓有一個公共點的直線的斜率為

的方程為,代入橢圓方程可得

,即

,       

可得,其中,

設(shè)的斜率分別為,則是上述方程的兩個根,

,即

綜上可知,對于橢圓上的任意點,都有

考點:本題主要考查圓的方程,直線與橢圓的位置關(guān)系,平面向量的坐標(biāo)運算。

點評:中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題新定義了“準(zhǔn)圓”,解答時要注意審題,明確其特征。本題易漏“其中之一斜率不存在,另一斜率為0, 的情況。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(ⅰ)若不等式對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案