已知a、b、c為△ABC的三邊長,若滿足(a+b-c)(a+b+c)=ab,則∠C的大小為
 
考點:余弦定理
專題:解三角形
分析:由條件求得 a2+b2-c2=-ab,再利用余弦定理可得cosC的值,從而求得C的值.
解答: 解:△ABC中,∵(a+b-c)(a+b+c)=ab,∴a2+b2-c2=-ab,
利用余弦定理可得cosC=
a2+b2-c2
2ab
=-
1
2
,∴C=
3
,
故答案為:
3
點評:本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+
3
cosx+1.
(1)求函數(shù)f(x)在[0,
π
2
]的最大值與最小值;
(2)若實數(shù)a,b,c使得af(x)+bf(x-c)=1對任意x∈R恒成立,求
bcosc
a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,an是Sn和1的等差中項,等差數(shù)列{bn}滿足b1+S4=0,b9=a1
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=
1
(bn+16)(bn+18)
,求數(shù)列{cn}的前n項和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)y=
10x+10-x
10x-10-x
的定義域、值域、奇偶性和單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的函數(shù),對任意的x1,x2,當(dāng)x1,x2(x1≠x2)都在(0,+∞)時總有(x1-x2)(f(x1)-f(x2))<0,并滿足f(xy)=f(x)+f(y),f(
1
3
)=1.
(1)求f(1)的值;
(2)求證:f(x)在(0,+∞)上單調(diào)遞減;
(3)如果f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(|x|+1),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
,若mn<0,m+n>0,則有F(m)+F(n)( 。
A、一定為負(fù)數(shù)B、等于0
C、一定為正數(shù)D、正負(fù)不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個命題:
(1)若sin2A=sin2B,則△ABC為等腰三角形;
(2)若sinA=cosB,則△ABC為直角三角形;
(3)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
以上正確命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=3,c=3
3
,A=30°,則角C等于( 。
A、30°B、60°或120°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)y=f(x)的圖象過點(2,4),求:
(1)指數(shù)函數(shù)y=f(x)的解析式;
(2)f(3)的值.

查看答案和解析>>

同步練習(xí)冊答案