【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)若,求直線與曲線的交點(diǎn)的直角坐標(biāo);

2)若點(diǎn)在曲線上,且到直線距離的最大值為,求直線的斜率.

【答案】1;(2.

【解析】

1)求出直線的普通方程,聯(lián)立直線與曲線的普通方程,即可求得直線與曲線的交點(diǎn)的直角坐標(biāo);

2)求得圓的圓心到直線的距離為,將直線的方程化為普通方程,利用點(diǎn)到直線的距離公式可求得的值,利用同角三角函數(shù)的基本關(guān)系求得的值,即為直線的斜率.

1)當(dāng)時(shí),直線的參數(shù)方程為為參數(shù)),

將直線的參數(shù)方程化為普通方程得,

曲線的極坐標(biāo)方程可化為,由可得曲線的普通方程為

聯(lián)立,解得

因此,直線與曲線的交點(diǎn)的直角坐標(biāo)為

2)由題意可知,直線是過點(diǎn)且傾斜角為的直線,點(diǎn)在圓上,

的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,半徑為,

設(shè)圓的圓心到直線的距離為,則點(diǎn)到直線的距離的最大值為,得,

在直線的參數(shù)方程中消去參數(shù),

由點(diǎn)到直線的距離公式得,則,

,

因此,直線的斜率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個(gè)廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點(diǎn)在⊙O上,A,B,CD恰是一個(gè)正方形的四個(gè)頂點(diǎn).根據(jù)規(guī)劃要求,在A,B,C,D四點(diǎn)處安裝四盞照明設(shè)備,從圓心O點(diǎn)出發(fā),在地下鋪設(shè)4條到A,BC,D四點(diǎn)線路OA,OB,OC,OD.

1)若正方形邊長為10米,求廣場的面積;

2)求鋪設(shè)的4條線路OAOB,OC,OD總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,,,的中點(diǎn).現(xiàn)分別沿,折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.

(Ⅰ)若、分別為、的中點(diǎn),求證:平面平面;

(Ⅱ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)函數(shù)內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

2)若函數(shù)有兩個(gè)不同的極值點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動(dòng)實(shí)施健康中國戰(zhàn)略,樹立國家大衛(wèi)生、大健康概念,手機(jī)APP也推出了多款健康運(yùn)動(dòng)軟件,如微信運(yùn)動(dòng),楊老師的微信朋友圈內(nèi)有位好友參與了微信運(yùn)動(dòng),他隨機(jī)選取了位微信好友(女人,男人),統(tǒng)計(jì)其在某一天的走路步數(shù),其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860

8520

7326

6798

7325

8430

3216

7453

11754

9860

8753

6450

7290

4850

10223

9763

7988

9176

6421

5980

男性好友走路的步數(shù)情況可分為五個(gè)類別:步(說明表示大于等于,小于等于,下同),步,步,步,步及以上,且三種類別人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的條形圖,若某人一天的走路步數(shù)超過步被系統(tǒng)認(rèn)定為衛(wèi)健型,否則被系統(tǒng)認(rèn)定為進(jìn)步型”.

1)若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來估計(jì)所有微信好友每日走路步數(shù)的概率分布,請估計(jì)楊老師的微信好友圈里參與微信運(yùn)動(dòng)名好友中,每天走路步數(shù)在步的人數(shù);

2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認(rèn)定認(rèn)定類型性別有關(guān)?

衛(wèi)健型

進(jìn)步型

總計(jì)

20

20

總計(jì)

40

附:,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切.

1)求的值.

2)求證:

3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點(diǎn)在圓上,且和圓 的一個(gè)交點(diǎn),求;

(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).證明:

1存在唯一的極值點(diǎn);

2有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用一個(gè)平行于底面的截面去截一個(gè)正棱錐,截面和底面間的幾何體叫正棱臺(tái).如圖,在四棱臺(tái)中,分別為的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若側(cè)棱所在直線與上下底面中心的連線所成的角為,求直線與平面所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案