已知橢圓:兩個(gè)焦點(diǎn)之間的距離為2,且其離心率為.
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 若為橢圓的右焦點(diǎn),經(jīng)過橢圓的上頂點(diǎn)B的直線與橢圓另一個(gè)交點(diǎn)為A,且滿
足,求外接圓的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
2 |
1 |
2 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
3 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省南安一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
已知B(-1,1)是橢圓上一點(diǎn),且點(diǎn)B到橢圓的兩個(gè)焦點(diǎn)距離之和為4.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)A為橢圓的左頂點(diǎn),直線AB交y軸于點(diǎn)C,過C作直線l交橢圓于D、E兩點(diǎn),問:是否存在直線l,使得△CBD與△CAE的面積之比為1∶7.若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:0113 期中題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com