【題目】業(yè)界稱“中國芯”迎來發(fā)展和投資元年,某芯片企業(yè)準(zhǔn)備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為A(A為常數(shù))元,之后每年會投入一筆研發(fā)資金,n年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當(dāng)
時,
近似地滿足
,其中
,
為常數(shù),
.已知3年后總投入資金為研發(fā)啟動是投入資金的3倍,問:
(1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的8倍;
(2)研發(fā)啟動后第幾年投入的資金最多?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,E,F分別為AB,CD的中點,將△ADE沿DE折起,使△ACD為等邊三角形,如圖所示,記二面角A-DE-C的大小為.
(1)證明:點A在平面BCDE內(nèi)的射影G在直線EF上;
(2)求角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下焦點分別為
,
,離心率為
,點
在橢圓C上,延長
交橢圓于N點.
(1)求橢圓C的方程;
(2)P,Q為橢圓上的點,記線段MN,PQ的中點分別為A,B(A,B異于原點O),且直線AB過原點O,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面邊長為,側(cè)棱長為
的正四棱柱
中,
是側(cè)棱
上的一點,
.
(1)若,求異面直線
與
所成角的余弦;
(2)是否存在實數(shù),使直線
與平面
所成角的正弦值是
?若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點為點
在平面
上的正投影,則記
.如圖,在棱長為
的正方體
中,記平面
為
,平面
為
,點
是棱
上一動點(與
、
不重合)
,
.給出下列三個結(jié)論:
①線段長度的取值范圍是
;
②存在點使得
平面
;
③存在點使得
.
其中,所有正確結(jié)論的序號是( )
A.①②③B.②③C.①③D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間與極值;
(2)當(dāng)函數(shù)有兩個極值點時,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R,對于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B是有限集,則使得集合B中元素個數(shù)最少時的實數(shù)k的取值范圍是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是_________(請把你認(rèn)為正確說法的序號都填上).
(1)函數(shù)的最小正周期為
(2)若命題:“
,使得
”,則
:“
,均有
”
(3)中,
是
的充要條件;
(4)已知點N在所在平面內(nèi),且
,則點N是
的重心;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是函數(shù)
的反函數(shù),解方程
;
(2)當(dāng)時,定義
,設(shè)
,數(shù)列
的前n項和為
,求
及
;
(3)對于任意,其中
,當(dāng)
能作為一個三角形的三邊長時,
也總能作為一個三角形的三邊長,試探究M的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com