已知復(fù)數(shù)z滿足(
3
+3i)•z=3i,則z等于(  )
A、
3
4
+
3
4
i
B、
3
2
-
3
2
i
C、
3
4
-
3
4
i
D、
3
2
+
3
2
i
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運算法則即可得出.
解答: 解:∵(
3
+3i)•z=3i,
(
3
+3i)(
3
-3i)z
=3(
3
-3i)i
,化為12z=3(
3
i+3)
,∴z=
3
4
+
3
4
i

故選:A.
點評:本題考查了復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在定義域上為增函數(shù)的是( 。
A、y=(
1
2
x
B、y=x3
C、y=lnx2
D、y=
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(-1,1)的直線l與曲線f(x)=x3-x2-2x+1相切,且(-1,1)不是切點,則直線l的斜率為( 。
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=-x3+ax在(-1,1)內(nèi)單調(diào)遞減,則a的取值范圍為( 。
A、(-∞,0]
B、(-∞,3)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P為△ABC所在平面外一點,PO⊥平面ABC,垂足為O,若滿足:
(1)三條側(cè)棱與底面ABC所成的角相等;
(2)三個側(cè)面與底面ABC所成的銳二面角相等;
(3)三條側(cè)棱兩兩互相垂直.
則點O依次是△ABC的( 。
A、內(nèi)心,外心,重心
B、外心,內(nèi)心,垂心
C、重心,垂心,內(nèi)心
D、外心,垂心,重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,3)和直線l:2x+3y-6=0,點B在l上運動,點P是有向線段AB上的分點,且
AP
=
1
2
PB
,則點P的軌跡方程是( 。
A、6x-9y-28=0
B、6x-9y+28=0
C、6x+9y-28=0
D、6x+9y+28=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1+a2+a3=12,a3+a4+a5=18,則a7+a8+a9=( 。
A、-12B、6C、30D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[x2-(a+2)x-2a2+a+2]ex
(Ⅰ)當(dāng)a=0時,求曲線y=f(x)在x=0處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
px2+2
q+x
是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),f(2)=5.
(1)求p、q的值;
(2)求f(x)的值域;
(3)若方程f(x)=a在區(qū)間[
1
2
,3]上恒有兩個不同的實根,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案