已知函數(shù)y=f(x)的定義域?yàn)镽,且對(duì)任意a,b∈R,都有f(a+b)=f(a)+f(b),且當(dāng)x>0時(shí),f(x)<0恒成立,f(3)=-3.
(1)證明:函數(shù)y=f(x)是R上的減函數(shù);
(2)證明:函數(shù)y=f(x)是奇函數(shù);
(3)試求函數(shù)y=f(x)在[m,n](m,n∈Z)上的值域.
(1)證明 設(shè)x1,x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).
故f(x)是R上的減函數(shù).
(2)證明 ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,則有f(x)+f(-x)=f(0),
又令a=b=0,則有f(0)=f(0)+f(0),∴f(0)=0.從而x∈R,f(x)+f(-x)=0,
∴f(-x)=-f(x).故y=f(x)是奇函數(shù).
(3)解 由于y=f(x)是R上的單調(diào)遞減函數(shù),
∴y=f(x)在[m,n]上也是減函數(shù),故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).
由于f(n)=f(1+(n-1))=f(1)+f(n-1)=…=nf(1),同理f(m)=mf(1).
又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m, f(n)=-n.
∴函數(shù)y=f(x)在[m,n]上的值域?yàn)椋?n,-m].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2011 |
2 |
2011 |
3 |
2011 |
4 |
2011 |
2010 |
2011 |
A、1005 | B、2010 |
C、2011 | D、4020 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
lnx |
x |
1 |
e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
lnx |
x |
1 |
e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-x | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com