【題目】定義在上的函數(shù)為增函數(shù),對(duì)任意都有(為常數(shù))
(1)判斷為何值時(shí),為奇函數(shù),并證明;
(2)設(shè),是上的增函數(shù),且,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
(3)若,,為的前項(xiàng)和,求正整數(shù),使得對(duì)任意均有.
【答案】(1) 是奇函數(shù)(2)(3)
【解析】試題分析: (1)根據(jù)定義在R上的奇函數(shù)的性質(zhì),有,求得k的值,再根據(jù),賦值,即可得到與之間的關(guān)系,根據(jù)奇函數(shù)的定義,即可證得結(jié)論;
(2)將代入恒等式可得,再利用恒等式進(jìn)行賦值,將3轉(zhuǎn)化為f(2),再根據(jù)f(x)的單調(diào)性去掉“f”,轉(zhuǎn)化為對(duì)任意恒成立,采用換元法,再用變量分離出結(jié)果
(3)實(shí)際是找數(shù)列的最大值,根據(jù)通項(xiàng)的正負(fù)情況,前四項(xiàng)都是正數(shù),從第五項(xiàng)起是負(fù)數(shù),所以很容易找出的最大值為,再根據(jù)f(x)的單調(diào)性的結(jié)果;
試題解析:
(1)若在上為奇函數(shù),則,令
則,所以
證明:由,令,,則
又,則有,即對(duì)任意成立,
所以是奇函數(shù).
(2)因?yàn)?/span>,所以
所以對(duì)任意恒成立.
又是上的增函數(shù),所以對(duì)任意恒成立,
即對(duì)任意恒成立.令,則恒成立,,令,g(t)在(0,1+)遞減,在遞增,最小值為g(所以實(shí)數(shù)的取值范圍是.
(3)
因?yàn)?/span>;
當(dāng)n≥5時(shí),
,而>0得
所以,當(dāng)n≥5時(shí),<0,所以對(duì)任意n∈N*恒有故k=4, ∵f(x)是增函數(shù),所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,函數(shù).
(1)求的定義域及其零點(diǎn);
(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;
(3)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角.
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大;
(2)若c=2,則當(dāng)a,b分別取何值時(shí),△ABC的面積取得最大值,并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線:,過焦點(diǎn)斜率大于零的直線交拋物線于、兩點(diǎn),且與其準(zhǔn)線交于點(diǎn).
(Ⅰ)若線段的長為,求直線的方程;
(Ⅱ)在上是否存在點(diǎn),使得對(duì)任意直線,直線,,的斜率始終成等差數(shù)列,若存在求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)是( )
①函數(shù)的零點(diǎn)有2個(gè);
②函數(shù)的最小正周期是;
③命題“函數(shù)在處有極值,則”的否命題是真命題;
④.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺(tái)機(jī)器使用時(shí)間較長,但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時(shí)生產(chǎn)有 缺點(diǎn)的零件數(shù)y(件) | 11 | 9 | 8 | 5 |
(1)用相關(guān)系數(shù)r對(duì)變量y與x進(jìn)行相關(guān)性檢驗(yàn);
(2)如果y與x有線性相關(guān)關(guān)系,求線性回歸方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù)計(jì)算公式:,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)y=3sin(2x+ ),
(1)求振幅、初相和最小正周期;
(2)簡述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com