【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

【答案】(1), (2)

【解析】試題分析: () 消去得直線的普通方程為. 由極坐標(biāo)與直角坐標(biāo)互化公式 ,可得曲線的直角坐標(biāo)方程為, .

() 設(shè)曲線上的點(diǎn)為,

則點(diǎn)到直線的距離為 當(dāng), , 可得曲線上的點(diǎn)到直線的距離的最大值為.

試題解析:

() 消去,

所以直線的普通方程為.

,

.

代入上式,

得曲線的直角坐標(biāo)方程為, .

() 1:設(shè)曲線上的點(diǎn)為,

則點(diǎn)到直線的距離為

當(dāng), ,

所以曲線上的點(diǎn)到直線的距離的最大值為.

2: 設(shè)與直線平行的直線為,

當(dāng)直線與圓相切時, 得,

解得 (舍去),

所以直線的方程為.

所以直線與直線的距離為.

所以曲線上的點(diǎn)到直線的距離的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計(jì)劃在正方MNPQ上建一座花壇,造價是每平方米4 200元,在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價是每平方米210元,再在四個空角上鋪上草坪,造價是每平方米80元.

(1)設(shè)總造價是S元,AD長為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)x為何值時,S最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,設(shè)函數(shù)

1)若函數(shù)的圖象關(guān)于直線對稱,且時,求函數(shù)的單調(diào)增區(qū)間;

2)在(1)的條件下,當(dāng)時,函數(shù)有且只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD的底面ABCD是正方形,E,F分別為ACPB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.

(1)EF與平面ABCD所成角的大小;

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運(yùn)

會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國公民對申辦奧運(yùn)會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

年齡不大于50歲

80

年齡大于50歲

10

合計(jì)

70

100

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線在點(diǎn)處的切線斜率為0.

(1)討論函數(shù)的單調(diào)性;

(2)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(I), 恒成立,求常數(shù)的取值范.

已知非零常數(shù)、滿足,求不等式的解集;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線上一個動點(diǎn), 為圓上一個動點(diǎn),那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線的準(zhǔn)線距離之和的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案