已知x>1,則函數(shù)f(x)=4x+
1
x-1
+1的最小值是( 。
A、7B、9C、11D、13
考點:基本不等式
專題:不等式的解法及應用
分析:把函數(shù)恒等變形f(x)=4x+
1
x-1
+1=4(x-1)+
1
x-1
+5,利用均值不等式求解.
解答: 解:函數(shù)f(x)=4x+
1
x-1
+1=4(x-1)+
1
x-1
+5
∵x>1,∴x-1>0,
∴4(x-1)+
1
x-1
≥4,(x=
3
2
等號成立)
4(x-1)+
1
x-1
+5≥9(x=
3
2
等號成立)
故選:B
點評:本題考查了均值不等式在函數(shù)最值中的應用,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

證明:-
2
≤sinα+cosα≤
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中的假命題是(  )
A、?x∈R,sinx=
5
2
B、?x∈R,log2x=1
C、?x∈R,(
1
2
)
x
>0
D、?x∈R,x2≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ)求數(shù)列{an},{bn}的通項an和bn
(Ⅱ)設cn=an•bn,數(shù)列{cn}的前n項和為Tn,若不等式nTn>a•2n+6n對任意的n∈N*恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,且A、B、C成等差數(shù)列.
(Ⅰ)角B的大小;
(Ⅱ)若a=2,△ABC的面積SV=2
3
,求b、c的長及△ABC外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2ax+3在區(qū)間(-∞,4)上單調遞增,則a的取值范圍是( 。
A、a<4B、a≤4
C、a>4D、a≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx+2015滿足f(-1)=f(3),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,A、B、C對應邊分別為a、b、c.若a=x,b=2,B=45°,且此三角形有兩解,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一回形圖,其回形通道的寬和OB的長均為1,回形線與射線OA交于A1、A2、
A3….若從O點到A1點的回形線為第1圈(長為7),從A1點到A2點的回形線為第2圈,從A2點到A3點的回形線為第3圈,…,依此類推,則第10圈的長為( 。
A、70B、79C、87D、98

查看答案和解析>>

同步練習冊答案