橢圓C過兩個點A(
5
2
,2
3
),B(
5
2
2
,2
2
).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點M(2,1)作直線l,交橢圓C于P、Q兩點,且M為P、Q的中點,求直線l的方程.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)橢圓C的方程為mx2+ny2=1(m>0,n>0),把A,B的坐標(biāo)代入即可得出;
(2)若l的斜率不存在,此時PQ的中點不為M,應(yīng)舍去.設(shè)l的斜率為k,可得l的方程y=k(x-2)+1,與橢圓的方程聯(lián)立可得根與系數(shù),再利用中點坐標(biāo)公式可得k即可.
解答: 解:(1)設(shè)橢圓C的方程為mx2+ny2=1(m>0,n>0),
則由題意可得
25
4
m+12n=1
25
2
m+8n=1

解得
m=
1
25
n=
1
16
,
∴橢圓C的標(biāo)準(zhǔn)方程為
x2
25
+
y2
16
=1
;
(2)若l的斜率不存在,則直線l的方程為:x=2.
此時PQ的中點不為M,顯然不合題意,∴l(xiāng)的斜率存在,設(shè)其為k,
則l:y=k(x-2)+1,
y=k(x-2)+1
x2
25
+
y2
16
=1
則有(25k2+16)x2+50k(1-2k)x+25(1-2k)2-400=0,
由韋達定理,x1+x2=
50k(2k-1)
25k2+16
   又x1+x2=4,
50k(2k-1)
25k2+16
=4

k=-
32
25
,
此時方程(*)△>0,
∴l(xiāng)方程為y=-
32
25
(x-2)+1
即32x+25y-89=0.
點評:本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)、中點坐標(biāo)公式,考查了推理能力和計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖長方體ABCD-A1B1C1D1中,AB=AD=2AA1=4,E是上底面中心,F(xiàn),M為A1B1與CD的中點.
(Ⅰ)寫出C1M與平面EFAD的位置關(guān)系并證明.
(Ⅱ)求證:平面B1BAF⊥平面EFAD.
(Ⅲ)求幾何體B1EF-BDA的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項和為Sn;{bn}是等比數(shù)列,且a1=b1=1,a4+b4=-20,S4-b4=43.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-cos2x
,試討論該函數(shù)的奇偶性、周期性以及在區(qū)間[0,π]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)生產(chǎn)一種產(chǎn)品,日產(chǎn)量基本保持在1萬件到10萬件之間,由于受技術(shù)水平等因素的影響,會產(chǎn)生一些次品,根據(jù)統(tǒng)計分析,其次品率P(次品率=
日生產(chǎn)次品數(shù)
日生產(chǎn)量
)與日產(chǎn)量x(萬件)之間基本滿足關(guān)系:P=
1
50
x   (1≤x≤5)
1
250
x2-
1
25
x+
1
5
  (5<x≤10)
,目前,每生產(chǎn)1萬件合格的產(chǎn)品可以盈利10萬元,但每生產(chǎn)1萬件次品將虧損40萬元.
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)問當(dāng)生產(chǎn)這種產(chǎn)品的日產(chǎn)量x約為多少時(精確到0.1萬件),企業(yè)可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別是a、b、c,且a=3,c=8,B=60°,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長軸是2
3
,焦點坐標(biāo)分別是(-
2
,0),(
2
,0).
(1)求這個橢圓的標(biāo)準(zhǔn)方程;
(2)如果直線y=x+m與這個橢圓交于兩不同的點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點,已知向量
OZ1
OZ2
,分別對應(yīng)復(fù)數(shù)z1,z2,且z1=
3
a+5
+(10-a2)i,z2=
2
1-a
+(2a-5)i,a∈R.若
z1
+z2為實數(shù),求
OZ1
OZ2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a3=3,a4=6,則a5=
 

查看答案和解析>>

同步練習(xí)冊答案