【題目】已知函數(shù).
(1)若,求函數(shù)在處的切線方程;
(2)討論極值點(diǎn)的個數(shù);
(3)若是的一個極小值點(diǎn),且,證明:.
【答案】(1)(2)當(dāng)時,無極值點(diǎn);當(dāng)時,有一個極值點(diǎn)(3)證明見解析
【解析】
(1)求導(dǎo)得到,,,得到切線方程.
(2)求導(dǎo)得到,討論和兩種情況, 時必存在,使,計算單調(diào)區(qū)間得到極值點(diǎn)個數(shù).
(3),即,代入得到,設(shè),確定函數(shù)單調(diào)遞減得到,令,確定單調(diào)性得到答案.
(1)當(dāng)時,,,所以,.
從而在處的切線方程為,即.
(2),,
①當(dāng)時,,在上是增函數(shù),不存在極值點(diǎn);
②當(dāng)時,令,,
顯然函數(shù)在是增函數(shù),又因?yàn)?/span>,,
必存在,使,
,,,為減函數(shù),
,,,為增函數(shù),
所以,是的極小值點(diǎn),
綜上:當(dāng)時,無極值點(diǎn),當(dāng)時,有一個極值點(diǎn).
(3)由(2)得:,即,
,
因?yàn)?/span>,所以,
令,,在上是減函數(shù),
且,由得,所以.
設(shè),,,
,,所以為增函數(shù),
即,即,所以,
所以,所以,
因?yàn)?/span>,所以,,
相乘得,
所以,
結(jié)論成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新藥在進(jìn)入臨床實(shí)驗(yàn)之前,需要先通過動物進(jìn)行有效性和安全性的實(shí)驗(yàn).現(xiàn)對某種新藥進(jìn)行5000次動物實(shí)驗(yàn),一次實(shí)驗(yàn)方案如下:選取3只白鼠對藥效進(jìn)行檢驗(yàn),當(dāng)3只白鼠中有2只或2只以上使用“效果明顯”,即確定“實(shí)驗(yàn)成功”;若有且只有1只“效果明顯”,則再取2只白鼠進(jìn)行二次檢驗(yàn),當(dāng)2只白鼠均使用“效果明顯”,即確定“實(shí)驗(yàn)成功”,其余情況則確定“實(shí)驗(yàn)失敗”.設(shè)對每只白鼠的實(shí)驗(yàn)相互獨(dú)立,且使用“效果明顯”的概率均為.
(Ⅰ)若,設(shè)該新藥在一次實(shí)驗(yàn)方案中“實(shí)驗(yàn)成功”的概率為,求的值;
(Ⅱ)若動物實(shí)驗(yàn)預(yù)算經(jīng)費(fèi)700萬元,對每只白鼠進(jìn)行實(shí)驗(yàn)需要300元,其他費(fèi)用總計為100萬元,問該動物實(shí)驗(yàn)總費(fèi)用是否會超出預(yù)算,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓的左,右焦點(diǎn)分別為,,點(diǎn)又恰為拋物線的焦點(diǎn),以為直徑的圓與橢圓僅有兩個公共點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與相交于,兩點(diǎn),記點(diǎn),到直線的距離分別為,,.直線與相交于,兩點(diǎn),記,的面積分別為,.
(。┳C明:的周長為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求C的普通方程和的直角坐標(biāo)方程;
(2)求C上的點(diǎn)到距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國共產(chǎn)黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名同學(xué)中至少有1人參加,且當(dāng)這3名同學(xué)都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,上、下頂點(diǎn)分別為,,直線的傾斜角為,橢圓上的點(diǎn)到焦點(diǎn)的最大距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若經(jīng)過左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),且,兩點(diǎn)均在軸的左側(cè),記和的面積分別為和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,平行四邊形中,,,,為中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com