【題目】2017年天貓五一活動結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機在當?shù)叵M超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對應的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);
(2)計算在五一活動中消費超過3000元的消費者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
【答案】(1);(2)50;(3).
【解析】試題分析:(1)利用小矩形面積比就是頻率比,和所有頻率和為,可求得各組的頻,再利用組的頻率可估計該地區(qū)的人數(shù);(2)由頻率分布直方圖求平均數(shù)可由各組的中間數(shù)與該組的頻率乘積后再求和可得;(3)先由分層抽樣得出抽取人在各組的分配情況,然后寫出所有抽取兩人的可能情況,找出滿足條件的,利用古典概型可求得結(jié)果.
試題解析:(1)設區(qū)間的頻率為x,則區(qū)間內(nèi)的頻率依次為,依題意
得
在五一活動中消費超過3000元且年齡在歲之間的人數(shù)為:
(人)
(2)依題意,所求的平均數(shù)為:
.
(3)若按分層抽樣,年齡在分別抽取2人和5人,記年齡在的兩
人為A,B,記年齡在的5人為1,2,3,4,5;隨機抽取兩人可能情況有:
(A,B),(A,1)(A,2),(A,3),(A,4),(A,5),(B,1),(B,2),(B,3),(B,4),(B,5),(1,2),(1,3),(1,4)(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共21種情況,
其中滿足條件的有:(A,B),(A,1)(A,2),(A,3),(A,4),(A,5),(B,1),(B,2),(B,3),(B,4),(B,5)共11
種故所求概率為: .
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的方程為.
(I)若點在圓的外部,求的取值范圍;
(II)當時,是否存在斜率為的直線,使以被圓截得的弦為直徑所作的圓過原點?若存在,求出的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】宜昌一中江南新校區(qū)擬建一個扇環(huán)形狀的花壇(如圖所示),按設計要求扇環(huán)的周長為30米,其中大圓弧所在圓的半徑為10米,設小圓弧所在圓的半徑為米,圓心角(弧度).
(1)求關于的函數(shù)關系式;
(2)已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米,設花壇的面積與裝飾總費用之比為,求關于的函數(shù)關系式,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項為和Sn,點(n,)在直線y=x+上.數(shù)列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項和為153.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列的前項和
(3)設nN*,f(n)=問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市組織500名志愿者參加敬老活動,為方便安排任務將所有志愿者按年齡(單位:歲)分組,得到的頻率分布表如下.現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人擔任聯(lián)系人.
年齡(歲) | 頻率 | |
第1組 | 0.1 | |
第2組 | 0.1 | |
第3組 | 0.4 | |
第4組 | 0.3 | |
第5組 | 0.1 |
(1)應分別在第1,2,3組中抽取志愿者多少人?
(2)從這6人中隨機抽取2人擔任本次活動的宣傳員,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”。根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是 ( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3
D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為1,如圖所示:
(1)在正方形內(nèi)任取一點,求事件“”的概率;
(2)用芝麻顆粒將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)芝麻一共56粒,有44粒落在扇形內(nèi),請據(jù)此估計圓周率的近似值(精確到0.001).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com