【題目】已知正方形的邊長為1,如圖所示:
(1)在正方形內(nèi)任取一點,求事件“”的概率;
(2)用芝麻顆粒將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)芝麻一共56粒,有44粒落在扇形內(nèi),請據(jù)此估計圓周率的近似值(精確到0.001).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年天貓五一活動結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機在當(dāng)?shù)叵M超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對應(yīng)的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);
(2)計算在五一活動中消費超過3000元的消費者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司過去五個月的廣告費支出與銷售額(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知對呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:①銷售額與廣告費支出正相關(guān);②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè),求的單調(diào)區(qū)間;
(2)若在處取得極大值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,圓與直線相切,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)過點任作一直線交橢圓于兩點,記,若在線段上取一點,使得,試判斷當(dāng)直線運動時,點是否在某一定直一上運動?若是,請求出該定直線的方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個,命中個數(shù)的莖葉圖如下:
(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);
(2)通過計算,比較甲乙兩人的罰球水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線().
(1)求直線經(jīng)過的定點坐標(biāo);
(2)若直線交負半軸于,交軸正半軸于,為坐標(biāo)系原點,的面積為,求的最小值并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市經(jīng)營一批產(chǎn)品,在市場銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期)之間滿足,已知第5日的銷售量為55件,第10日的銷售量為50件。
(1)求第20日的銷售量; (2)若銷售單價Q(元/件)與的關(guān)系式為,求日銷售額的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)函數(shù)在定義域內(nèi)存在零點,求的取值范圍.
(3)若,當(dāng)時,不等式恒成立,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com