【題目】已知橢圓的左、右焦點(diǎn)分別為,四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長為且面積為的菱形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知直線,過右焦點(diǎn)F2,且它們的斜率乘積為,設(shè),分別與橢圓交于點(diǎn),,,的中點(diǎn)為,的中點(diǎn)為,求面積的最大值.

【答案】1;(2

【解析】

1)根據(jù)題意列出方程組,解出的值即可得解;

2)設(shè)直線的方程為,則直線方程為,然后分別聯(lián)立直線和橢圓的方程,以及直線和橢圓的方程,再結(jié)合韋達(dá)定理得到,從而得到點(diǎn)的坐標(biāo),因此,最后結(jié)合均值不等式即可求得面積最大值.

解:(1)由題可知,,

解得

故橢圓的標(biāo)準(zhǔn)方程為

2)設(shè)直線的方程為,,

聯(lián)立,

消去,

所以,

因?yàn)?/span>的中點(diǎn)為

所以,

因?yàn)橹本的斜率為,且的斜率乘積為

所以直線方程為,

同理可得,,

所以,

所以的中點(diǎn)為

因此

當(dāng)且僅當(dāng),即時(shí)取等號(hào),

故△OMN面積的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)e為自然對(duì)數(shù)的底數(shù))時(shí),

i)若上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍;

ii)若),求上的最大值;

2)當(dāng)時(shí),,,數(shù)列滿足.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,為橢圓C上一點(diǎn).

1)求橢圓C的方程;

2)設(shè)橢圓C的左、右頂點(diǎn)分別為,,過分別作x軸的垂線,,橢圓C的一條切線,交于M,N兩點(diǎn),求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線切于點(diǎn),直線過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.

1)求拋物線的方程及點(diǎn)的坐標(biāo);

2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在直角梯形ABCD中,ABCD,ABAD,且ABADCD1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,MED的中點(diǎn),如圖②.

(1)求證:AM∥平面BEC;

(2)求點(diǎn)D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,在三棱柱中,,,,如圖.

1)求證:平面;

2)若,求平面與平面所成銳二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,、分別是、的中點(diǎn),點(diǎn)在線段上,且.

1)求證:不論取何值,總有;

2)當(dāng)時(shí),求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率為,直線恒過的一個(gè)焦點(diǎn).

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點(diǎn),四邊形的頂點(diǎn)均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的圖象經(jīng)過點(diǎn).

(1)求拋物線的方程和焦點(diǎn)坐標(biāo);

(2)直線交拋物線不同兩點(diǎn),且位于軸兩側(cè),過點(diǎn)分別作拋物線的兩條切線交于點(diǎn),直線,軸的交點(diǎn)分別記作.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案