【題目】已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.
(1)求拋物線的方程及點的坐標;
(2)設(shè)直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.
【答案】(1),(1,2);(2)存在,
【解析】
(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標;
(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數(shù)使得斜率之和為定值.
(1)由題意,直線變?yōu)?/span>2x+1-m(2y+1)=0,所以定點Q的坐標為
拋物線的焦點坐標,
由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最小值為,
可得,解得或(舍去),
故拋物線C的方程為
又由消去y得,
因為直線與拋物線C相切,所以,解得,
此時,所以點P坐標為(1,2)
(2)設(shè)存在滿足條件的實數(shù),點,
聯(lián)立,消去x得,
則,
依題意,可得,解得m<-1或,
由(1)知P(1,2),
可得,
同理可得,
所以
=,
故存在實數(shù)=滿足條件.
科目:高中數(shù)學 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關(guān)設(shè)備將太陽光能直接轉(zhuǎn)化為電能,近幾年在國內(nèi)出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏裝機量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 6.1 | 7.1 | 9.7 | 12.2 |
某位同學分別用兩種模型:①,②進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于)
經(jīng)過計算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立關(guān)于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01)
附:歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某一電視臺對年齡高于40歲和不高于40歲的人是否喜歡西班牙隊進行調(diào)查,40歲以上調(diào)查了50人,不高于40歲調(diào)查了50人,所得數(shù)據(jù)制成如下列聯(lián)表:
不喜歡西班牙隊 | 喜歡西班牙隊 | 總計 | |
40歲以上 | 50 | ||
不高于40歲 | 15 | 35 | 50 |
總計 | 100 |
已知工作人員從所有統(tǒng)計結(jié)果中任取一個,取到喜歡西班牙隊的人的概率為,則有超過________的把握認為年齡與西班牙隊的被喜歡程度有關(guān).
參考公式與臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①經(jīng)過定點的直線都可以用方程表示;
②經(jīng)過定點的直線都可以用方程表示;
③不經(jīng)過原點的直線都可以用方程表示;
④經(jīng)過任意兩個不同的點、的直線都可以用方程表示,
其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為美化城市環(huán)境,相關(guān)部門需對一半圓形中心廣場進行改造出新,為保障市民安全,施工隊對廣場進行圍擋施工.如圖,圍擋經(jīng)過直徑的兩端點A,B及圓周上兩點C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點A,D,C,B.已知該半圓半徑OA長30米,∠COD為60°,設(shè)∠BOC為.
(1)求圍擋內(nèi)部四邊形OCQD的面積;
(2)為減少對市民出行的影響,圍擋部分面積要盡可能小.求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現(xiàn)對他前7次考試的數(shù)學成績、物理成績進行分析.下面是該生7次考試的成績.
數(shù)學 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的證明;
(2)已知該生的物理成績與數(shù)學成績是線性相關(guān)的,若該生的物理成績達到115分,請你估計他的數(shù)學成績大約是多少?并請你根據(jù)物理成績與數(shù)學成績的相關(guān)性,給出該生在學習數(shù)學、物理上的合理建議.
參考公式:方差公式:,其中為樣本平均數(shù).,。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項的二項式系數(shù)和為256
B.展開式中第6項的系數(shù)最大
C.展開式中存在常數(shù)項
D.展開式中含項的系數(shù)為45
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com