設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過坐標原點作曲線的切線,證明:切點的橫坐標為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.
(1)的減區(qū)間為,增區(qū)間
(2)導(dǎo)數(shù)的幾何意義的運用,理解切線的斜率即為該點的導(dǎo)數(shù)值既可以得到求證。
(3)

試題分析:解: (1)時,          1 分
                   3分

的減區(qū)間為,增區(qū)間                 5分
(2)設(shè)切點為,
切線的斜率,又切線過原點
           7分
滿足方程,由圖像可知
有唯一解,切點的橫坐標為1;              -8分
或者設(shè),
,且,方程有唯一解         -9分
(3),若函數(shù)在區(qū)間(0,1]上是減函數(shù),
,所以---(*) 10分


,則遞減,
即不等式恒成立                11分
,
上遞增,

,即,上遞增,
這與,矛盾               13分
綜上所述,                                    14分
解法二: ,若函數(shù)在區(qū)間(0,1]上是減函數(shù),
,所以 10分
顯然,不等式成立
時,恒成立            11分
設(shè)
設(shè)
上遞增, 所以         12分
上遞減,
所以             14分
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(Ⅰ)若是增函數(shù),求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(I)證明當 
(II)若不等式取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在上的函數(shù)是最小正周期為的偶函數(shù),的導(dǎo)函數(shù).當時,;當時,.則函數(shù)上的零點個數(shù)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),(是互不相等的常數(shù)),則等于( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象在點處的切線斜率為
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(為非零常數(shù)).
(Ⅰ)當時,求函數(shù)的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)對于增區(qū)間內(nèi)的三個實數(shù)(其中),
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)數(shù)為                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區(qū)間上的最小值為-2,求實數(shù)的取值范圍;
(3)若對任意,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案