已知函數(shù)的圖象在點處的切線斜率為
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標(biāo);若不存在,說明理由.
(1)
(2)方程有且只有一個實根.
(3)存在唯一點使得曲線在點附近的左、右兩部分分別
位于曲線在該點處切線的兩側(cè).

試題分析:解法一:(Ⅰ)因為,所以,
函數(shù)的圖象在點處的切線斜率
得:.                    4分
(Ⅱ)由(Ⅰ)知,,令
因為,,所以至少有一個根.
又因為,所以上遞增,
所以函數(shù)上有且只有一個零點,即方程有且只有一
個實根.                         7分
(Ⅲ)證明如下:
,可求得曲線在點處的切
線方程為,
.                    8分


.               11分
(1)當(dāng),即時,對一切成立,
所以上遞增.
,所以當(dāng),當(dāng),
即存在點,使得曲線在點A附近的左、右兩部分分別位于曲線
在該點處切線的兩側(cè).                   12分
(2)當(dāng),即時,
時,;時,;
時,
上單調(diào)遞減,在上單調(diào)遞增.
,所以當(dāng)時,;當(dāng)時,,
即曲線在點附近的左、右兩部分都位于曲線在該點處切線的
同側(cè).                                   13分
(3)當(dāng),即時,
時,;時,;時,
上單調(diào)遞增,在上單調(diào)遞減.
,所以當(dāng)時,;當(dāng)時,,
即曲線在點附近的左、右兩部分都位于曲線在該點處切線的同側(cè).
綜上,存在唯一點使得曲線在點附近的左、右兩部分分別
位于曲線在該點處切線的兩側(cè).                             14分
解法二:(Ⅰ)(Ⅱ)同解法一;
(Ⅲ)證明如下:
,,可求得曲線在點處的切
線方程為
.                  8分

,
.            11分
若存在這樣的點,使得曲線在該點附近的左、右兩部分都
位于曲線在該點處切線的兩側(cè),則問題等價于t不是極值點,
由二次函數(shù)的性質(zhì)知,當(dāng)且僅當(dāng),即時,
t不是極值點,即
所以上遞增.
,所以當(dāng)時,;當(dāng)時,,
即存在唯一點,使得曲線在點附近的左、右兩部分分別
位于曲線在該點處切線的兩側(cè).                         14分
點評:本題主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,函數(shù)與方程思想、數(shù)形結(jié)合思想、考查化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)的圖象在處的切線斜率為,求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)滿足,,則不等式的解集為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線y = f(x)的切線的斜率為負數(shù)時,求在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若時,關(guān)于的方程有唯一解,求的值;
(3)當(dāng)時,證明: 對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=,且當(dāng)時其導(dǎo)函數(shù)滿足
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別是定義在R上的奇函數(shù)和偶函數(shù)。當(dāng)時,。則不等式的解集是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,若,則a的值等于 (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案