【題目】已知函數(shù),若關(guān)于的方程恰有兩個不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是

A. B. C. , D. ,

【答案】A

【解析】

fx)=kx可變形為k,關(guān)于x的方程fx)=kx的實(shí)數(shù)根問題轉(zhuǎn)化為直線yk與函數(shù)gxgx的圖象的交點(diǎn)個數(shù)問題,由導(dǎo)數(shù)運(yùn)算可得函數(shù)gx)在(0,e)為增函數(shù),在(e,+∞)為減函數(shù),又x→0+時,gx)→﹣∞,x→+∞時,gx)→0+,ge,畫草圖即可得解.

設(shè)gx,

g′(x,

當(dāng)0<xe時,g′(x)>0,當(dāng)xe時,g′(x)<0,

則函數(shù)gx)在(0,e)為增函數(shù),在(e,+∞)為減函數(shù),

x→0+時,gx)→﹣∞,x→+∞時,gx)→0+,ge,

即直線yk與函數(shù)gx)的圖象有兩個交點(diǎn)時k的取值范圍為(0,),

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)fx=x3+k-1x2+k+5x-1

1)若k=-5,求fx)的極值;

2)若fx)在區(qū)間(0,3)內(nèi)單調(diào),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線的左右焦點(diǎn),過且斜率為1的直線與兩條漸近線分別交于兩點(diǎn),若,則雙曲線的離心率為( )

A. B. C. D.

【答案】B

【解析】設(shè)直線方程為,與漸近線方程聯(lián)立方程組解得因為,所以 ,選B.

點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.

型】單選題
結(jié)束】
10

【題目】設(shè)是兩條不同的直線, 是兩個不同的平面,則下列命題中正確的是( )

A. , ,則

B. , ,則

C. , ,則

D. ,且,點(diǎn),直線,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線圖象的一條對稱軸.

1)求的單調(diào)遞減區(qū)間;

2)已知函數(shù)的圖象是由圖象上的各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,然后再向左平移個單位長度得到,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由兩個橢圓和橢圓組成,當(dāng)成等比數(shù)列時,稱曲線為“貓眼曲線”.若貓眼曲線過點(diǎn),且的公比為.

(1)求貓眼曲線的方程;

(2)任作斜率為且不過原點(diǎn)的直線與該曲線相交,交橢圓所得弦的中點(diǎn)為,交橢圓所得弦的中點(diǎn)為,求證:為與無關(guān)的定值;

(3)若斜率為的直線為橢圓的切線,且交橢圓于點(diǎn),為橢圓上的任意一點(diǎn)(點(diǎn)與點(diǎn)不重合),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是

A. 56 B. 60 C. 120 D. 140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象為C,如下結(jié)論中正確的是(

①圖象C關(guān)于直線對稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);

③圖象C關(guān)于點(diǎn)對稱;④由的圖象向右平移個單位長度可以得到圖象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AEEB,ADEF,EFBC,BC=2AD=4EF=3,AE=BE=2,GBC的中點(diǎn).

(Ⅰ)求證:AB∥平面DEG

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實(shí)數(shù).

(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;

(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實(shí)數(shù)a的取值范圍;

(3)是否存在實(shí)數(shù)a(a<0),使得f(x)在閉區(qū)間上的最大值為2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案