【題目】是雙曲線的左右焦點,過且斜率為1的直線與兩條漸近線分別交于兩點,若,則雙曲線的離心率為( )

A. B. C. D.

【答案】B

【解析】設(shè)直線方程為,與漸近線方程聯(lián)立方程組解得因為,所以 ,選B.

點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.

型】單選題
結(jié)束】
10

【題目】設(shè)是兩條不同的直線, 是兩個不同的平面,則下列命題中正確的是( )

A. ,則

B. , ,則

C. , ,則

D. ,且,點,直線,則

【答案】C

【解析】A. ,則;

B. , ,則無交點,即平行或異面;

C. , ,過作平面與分別交于直線s,t,則, ,所以t,再根據(jù)線面平行判定定理得,因為 ,所以,即

D. ,且,點,直線,當(dāng)B在平面內(nèi)時才有,

綜上選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·山東卷)已知數(shù)列{an}的前n項和Sn3n28n,{bn}是等差數(shù)列,且anbnbn1.

(1)求數(shù)列{bn}的通項公式;

(2)cn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點,過點的直線,分別與圓交于兩點.

1)過點作圓的兩條切線,切點分別為,求

2)若,求證:直線過定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系中,直線過點,且傾斜角為,以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,半徑為4的圓的圓心的極坐標(biāo)為。

(Ⅰ)寫出直線的參數(shù)方程和圓的極坐標(biāo)方程;

(Ⅱ)試判定直線和圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)存在零點,且對任意都滿足,若關(guān)于的方程)恰有三個不同的根,則實數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列.

(1)是否存在實數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請說明理由;

(2)若是數(shù)列的前項和,求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是

A. B. , C. D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )

A.y=x2B.C.y=2|x|D.y=cosx

查看答案和解析>>

同步練習(xí)冊答案