化簡下列各式
(1)
tan1500cos(-5700)
sin(-6900)
;       
(2)
tan(π-α)sin(α+
π
2
)cos(2π-α)
cos(-π-α)tan(α-2π)
考點:運用誘導公式化簡求值,任意角的概念
專題:三角函數(shù)的求值
分析:(1)直接利用誘導公式化簡求解即可.
(2)利用誘導公式化簡,再利用同角三角函數(shù)間的基本關系變形,把tanα的值代入計算即可求出值
解答: 解:(1)
tan1500cos(-5700)
sin(-6900)
=
tan1500cos210°
sin30°
=
-
3
×(-
3
2
)
1
2
=1;       
(2)
tan(π-α)sin(α+
π
2
)cos(2π-α)
cos(-π-α)tan(α-2π)
=
tanαcosαcosα
cosαtanα
=cosα.
點評:此題考查了運用誘導公式化簡求值,以及同角三角函數(shù)間的基本關系,熟練掌握誘導公式及基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知角θ的終邊上有一點P(-5,12),求sinθ,cosθ,tanθ
(2)已知cosα=-
4
5
,求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinxcosx=
3
8
且x∈(
π
4
,
π
2
),則sinx-cosx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)在給出的直角坐標系中,畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=4x2+8x-3.
(1)指出函數(shù)y=f(x)圖象的開口方向、對稱軸方程、頂點坐標;
(2)求y=f(x)的最小值;
(3)寫出函數(shù)y=f(x)的單調(diào)區(qū)間.
(4)當x∈[0,2]時,求函數(shù)y=f(x)的最大植和最小植.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d在(-∞,0]上為增函數(shù),在[0,6]上為減函數(shù),且方程f(x)=0的三個根分別為1,x1,x2
(1)求實數(shù)b的取值范圍;
(2)求x12-4x1x2+x22的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市舉辦歌唱比賽,邀請了A、B、C、D四位資深音樂人擔任評委,按照節(jié)目程序,每一位選手取得決賽資格后可通過抽簽的方式選擇一位評委作為導師,且他們對導師的選擇是相互獨立的,某組共有甲、乙、丙、丁四位選手取得了決賽資格,獲得了選擇導師的機會.
(Ⅰ)求甲、乙、丙三人都選擇A為導師的概率;
(Ⅱ)求四位選手至少有一人選擇B作為導師的概率;
(Ⅲ)設四位選手選擇C為導師的人數(shù)ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集為實數(shù)集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4sin(
π
2
+
x
2
)cos(
x
2
+
π
6
).
(Ⅰ)求函數(shù)f(x)的最小正周期和圖象對稱中心的坐標;
(Ⅱ)在△ABC中,設內(nèi)角A,B,C的對邊分別是a,b,c,如果c=1,f(C)=
3
+1,且△ABC的面積為
3
2
,求sinA+sinB+sinC的值.

查看答案和解析>>

同步練習冊答案
关 闭