如果e1、e2是平面α內兩個不共線的向量,那么下列敘述中錯誤的有
①λe1+μe2(λ、μ∈R)可以表示平面α內的所有向量
②對于平面α中的任一向量a,使a=λe1+μe2的實數(shù)λ、μ有無數(shù)多對
③若向量λ1e1+μ1e2與λ2e1+μ2e2共線,則有且只有一個實數(shù)λ,使λ1e1+μ1e2=λ(λ2e1+μ2e2)
④若實數(shù)λ、μ使λe1+μe2=0,則λ=μ=0


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ③④
  4. D.
B
由平面向量基本定理可知命題①④為真命題,而命題②是假命題.當λ1e1+μ1e2=λ(λ2e1+μ2e2),當λ1=λ2=μ1=μ2時,對任意實數(shù)λ,均有λ1e1+μ1e2=λ(λ2e1+μ2e2).因此,命題③也是假命題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果
e1
,
e2
是平面a內所有向量的一組基底,那么( 。
A、若實數(shù)λ1,λ2使λ1
e1
+λ2
e2
=
0
,則λ12=0
B、空間任一向量可以表示為
a
=λ1
e1
+λ2
e2
,這里λ1,λ2∈R
C、對實數(shù)λ1,λ2,λ1
e1
+λ2
e2
不一定在平面a內
D、對平面a中的任一向量
a
,使
a
=λ1
e1
+λ2
e2
的實數(shù)λ1,λ2有無數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1、e2是平面α內所有向量的一組基底,那么(    )

A.若實數(shù)λ1、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a可以表示為a1e12e2,這里λ1、λ2是實數(shù)

C.對實數(shù)λ1、λ2,λ1e12e2不一定在平面α內

D.對平面α中的任一向量a,使a1e12e2的實數(shù)λ1、λ2有無數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1、e2是平面α內所有向量的一組基底,那么(    )

A.若實數(shù)λ1、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a可以表示為a1e12e2,這里λ1、λ2是實數(shù)

C.對實數(shù)λ1、λ2,λ1e12e2不一定在平面α內

D.對平面α中的任一向量a,使a1e12e2的實數(shù)λ1、λ2有無數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1、e2是平面內所有向量的一組基底,那么(    )

A.若實數(shù)m、n使得me1+ne2=0,則m=n=0

B.空間任一向量a可以表示為a1e12e2,其中λ1、λ2為實數(shù)

C.對于實數(shù)m、n,me1+ne2不一定在此平面上

D.對于平面內的某一向量a,存在兩對以上的實數(shù)m、n,使a=me1+ne2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1e2是平面α內所有向量的一組基底,那么,下列命題正確的是(    )

A.若實數(shù)λ1 、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a都可以表示為a1e12e2,其中λ1、λ2∈R

C.λ1e12e2不一定在平面α內,λ1、λ2∈R

D.對于平面α內任一向量a,使a1e12e2的實數(shù)λ1、λ2有無數(shù)對

查看答案和解析>>

同步練習冊答案