如果
e1
,
e2
是平面a內所有向量的一組基底,那么(  )
A、若實數(shù)λ1,λ2使λ1
e1
+λ2
e2
=
0
,則λ12=0
B、空間任一向量可以表示為
a
=λ1
e1
+λ2
e2
,這里λ1,λ2∈R
C、對實數(shù)λ1,λ2,λ1
e1
+λ2
e2
不一定在平面a內
D、對平面a中的任一向量
a
,使
a
=λ1
e1
+λ2
e2
的實數(shù)λ1,λ2有無數(shù)對
分析:根據(jù)基底的定義可以知道,平面上的任何一個向量都可以用這組基底來表示,并且,用基底表示的向量一定在這個平面上,把向量用基底表示時,對應的實數(shù)對是唯一確定的.
解答:解:∵由基底的定義可知,
e1
e2
是平面上不共線的兩個向量,
∴實數(shù)λ1,λ2使λ1
e1
+λ2
e2
=
0
,則λ12=0,
不是空間任一向量都可以表示為
a
=λ1
e1
+λ2
e2
,
而是平面a中的任一向量
a
,可以表示為
a
=λ1
e1
+λ2
e2
的形式,此時實數(shù)λ1,λ2有且只有一對,
而對實數(shù)λ1,λ2,λ1
e1
+λ2
e2
一定在平面a內,
故選A.
點評:用一組向量來表示一個向量,是以后解題過程中常見到的,向量的加減運算是用向量解決問題的基礎,要學好運算,才能用向量解決立體幾何問題,三角函數(shù)問題,好多問題都是以向量為載體的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果e1、e2是平面α內所有向量的一組基底,那么(    )

A.若實數(shù)λ1、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a可以表示為a1e12e2,這里λ1、λ2是實數(shù)

C.對實數(shù)λ1、λ2,λ1e12e2不一定在平面α內

D.對平面α中的任一向量a,使a1e12e2的實數(shù)λ1、λ2有無數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1、e2是平面α內所有向量的一組基底,那么(    )

A.若實數(shù)λ1、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a可以表示為a1e12e2,這里λ1、λ2是實數(shù)

C.對實數(shù)λ1、λ2,λ1e12e2不一定在平面α內

D.對平面α中的任一向量a,使a1e12e2的實數(shù)λ1、λ2有無數(shù)對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1e2是平面內所有向量的一組基底,那么(    )

A.若實數(shù)m、n使得me1+ne2=0,則m=n=0

B.空間任一向量a可以表示為a1e12e2,其中λ1、λ2為實數(shù)

C.對于實數(shù)m、n,me1+ne2不一定在此平面上

D.對于平面內的某一向量a,存在兩對以上的實數(shù)m、n,使a=me1+ne2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果e1e2是平面α內所有向量的一組基底,那么,下列命題正確的是(    )

A.若實數(shù)λ1 、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a都可以表示為a1e12e2,其中λ1、λ2∈R

C.λ1e12e2不一定在平面α內,λ1、λ2∈R

D.對于平面α內任一向量a,使a1e12e2的實數(shù)λ1、λ2有無數(shù)對

查看答案和解析>>

同步練習冊答案