設(shè)命題p:函數(shù)f(x)=3x2-2ax-1在區(qū)間(-∞,1]上單調(diào)遞減;命題q:函數(shù)y=
x2+ax+1
的定義域是R,如果命題“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:函數(shù)的性質(zhì)及應(yīng)用,簡易邏輯
分析:p為真命題?f(x)圖象的對稱軸x=
a
3
≥1
.q為真命題?△=a2-4≤0恒成立.命題“p或q”為真命題,“p且q”為假命題,可知:p和q有且只有一個(gè)是真命題.
解答: 解:p為真命題?f(x)圖象的對稱軸x=
a
3
≥1
?a≥3.
q為真命題?△=a2-4≤0恒成立?-2≤a≤2.
∵命題“p或q”為真命題,“p且q”為假命題,
∴p和q有且只有一個(gè)是真命題.
p真q假?
a≥3
a<-2或a>2
?a≥3;
p假q真?
a<3
-2≤a≤2
?-2≤a≤2
綜上所述:a∈[-2,2]∪[3,+∞).
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì)、復(fù)合命題真假的判定方法,考查了推理能力和計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積為S,且
AB
BC
=1,若
1
2
<S<
3
2
,則∠ABC的范圍是( 。
A、(
π
6
,
π
3
B、(
π
4
,
π
3
C、(
3
,
6
D、(
3
,
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AB⊥AC,頂點(diǎn)A1在底面ABC上的射影恰為點(diǎn)B,且AB=AC=A1B=2.
(1)求證:A1C1⊥平面AA1B1B;
(2)若P為線段B1C1的中點(diǎn),求四棱錐P-AA1B1B的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=mlnx,h(x)=x-a.
(Ⅰ)當(dāng)a=0時(shí),f(x)≤h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)m=2時(shí),若函數(shù)k(x)=f(x)-h(x)在[1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:當(dāng)n≥2,n∈N*時(shí),log2e+log3e+log4e+…+logne>
3n2-n-2
2n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x>1時(shí),f(x)>0,且對于任意的x,y∈(0,+∞),恒有f(xy)=f(x)+f(y)成立.
(Ⅰ)求f(1);
(Ⅱ)證明:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅲ)當(dāng)f(2)=1時(shí),
①解不等式f(x)+f(x-3)≤2;
②求函數(shù)f(x)在[
2
,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,cosx),
b
=(1,siny),
c
=(4,1),且(
a
+
b
)∥
c

(1)若x=
π
2
,求|
b
|;
(2)求
b
c
-
a
2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與曲線y=
3x2
在點(diǎn)P(8,4)處的切線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:曲線
x2
a-1
+
y2
5-a
=1為焦點(diǎn)在x軸上的橢圓;命題q:函數(shù)f(x)=x2-ax+9在R上取值恒為正;若命題“p或q”為真,命題“p且q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=1,點(diǎn)M是棱PC的中點(diǎn).
(1)求證:PB⊥面AMD;
(2)求三棱錐C-AMD的體積.

查看答案和解析>>

同步練習(xí)冊答案