【題目】下圖是某算法的程序框圖,則程序運行后輸出的結果是 .
【答案】3
【解析】解:第1次 ,滿足循環(huán),a=1,T=1,K=2,第2次滿足2<6;sin ,不成立,
執(zhí)行a=0,T=1,k=3,第3次有 ,不滿足條件循環(huán),
a=0,T=1,k=4,滿足 ,a=1,T=2,k=5,滿足k<6,
此時 成立,a=1,T=3,k=6,不滿足6<6,退出循環(huán),輸出結果T=3.
所以答案是:3.
【考點精析】根據題目的已知條件,利用算法的循環(huán)結構的相關知識可以得到問題的答案,需要掌握在一些算法中,經常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,循環(huán)結構可細分為兩類:當型循環(huán)結構和直到型循環(huán)結構.
科目:高中數學 來源: 題型:
【題目】某工廠的某種產品成箱包裝,每箱200件,每一箱產品在交付用戶之前要對產品作檢驗,如檢驗出不合格品,則更換為合格品.檢驗時,先從這箱產品中任取20件作檢驗,再根據檢驗結果決定是否對余下的所有產品作檢驗,設每件產品為不合格品的概率都為,且各件產品是否為不合格品相互獨立.
(1)記20件產品中恰有2件不合格品的概率為,求的最大值點.
(2)現(xiàn)對一箱產品檢驗了20件,結果恰有2件不合格品,以(1)中確定的作為的值.已知每件產品的檢驗費用為2元,若有不合格品進入用戶手中,則工廠要對每件不合格品支付25元的賠償費用.
(i)若不對該箱余下的產品作檢驗,這一箱產品的檢驗費用與賠償費用的和記為,求;
(ii)以檢驗費用與賠償費用和的期望值為決策依據,是否該對這箱余下的所有產品作檢驗?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在充分競爭的市場環(huán)境中,產品的定價至關重要,它將影響產品的銷量,進而影響生產成本、品牌形象等某公司根據多年的市場經驗,總結得到了其生產的產品A在一個銷售季度的銷量單位:萬件與售價單位:元之間滿足函數關系,A的單件成本單位:元與銷量y之間滿足函數關系.
當產品A的售價在什么范圍內時,能使得其銷量不低于5萬件?
當產品A的售價為多少時,總利潤最大?注:總利潤銷量售價單件成本
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經市場調查,新街口某新開業(yè)的商場在過去一個月內(以30天計),顧客人數(千人)與時間(天)的函數關系近似滿足(),人均消費(元)與時間(天)的函數關系近似滿足
(1)求該商場的日收益(千元)與時間(天)(, )的函數關系式;
(2)求該商場日收益的最小值(千元).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年3月14日,“共享單車”終于來到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關部門準備對該項目進行考核,考核的硬性指標是:市民對該項目的滿意指數不低于,否則該項目需進行整改,該部門為了了解市民對該項目的滿意程度,隨機訪問了使用共享單車的名市民,并根據這名市民對該項目滿意程度的評分(滿分分),繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于分的市民中隨機抽取人進行座談,求這人評分恰好都在的概率;
(II)根據你所學的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數=)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分,眾數,中位數;
(3)若這100名學生語文成績某些分數段的人數()與數學成績相應分數段的人數()之比如下表所示,求數學成績在[50,90)之外的人數.
分數段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+1(a,b為實數),設,
(1)若f(-1)=0,且對任意實數x均有f(x)≥0成立,求F(x)的表達式;
(2)在(1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調函數,求實數k的取值范圍;
(3)設mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對任意n∈N* , 三個數A(n),B(n),C(n)組成等差數列,求數列{an}的通項公式.
(2)證明:數列{an}是公比為q的等比數列的充分必要條件是:對任意n∈N* , 三個數A(n),B(n),C(n)組成公比為q的等比數列.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com