【題目】某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立

(1)記20件產(chǎn)品中恰有2件不合格品的概率為,的最大值點(diǎn)

(2)現(xiàn)對一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對每件不合格品支付25元的賠償費(fèi)用

(i)若不對該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;

(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對這箱余下的所有產(chǎn)品作檢驗(yàn)?

【答案】(1).

(2) (i)490.

(ii)應(yīng)該對余下的產(chǎn)品作檢驗(yàn).

【解析】分析:(1)利用獨(dú)立重復(fù)實(shí)驗(yàn)成功次數(shù)對應(yīng)的概率,求得之后對其求導(dǎo),利用導(dǎo)數(shù)在相應(yīng)區(qū)間上的符號,確定其單調(diào)性,從而得到其最大值點(diǎn),這里要注意的條件;

(2)先根據(jù)第一問的條件,確定出,在解(i)的時(shí)候,先求件數(shù)對應(yīng)的期望,之后應(yīng)用變量之間的關(guān)系,求得賠償費(fèi)用的期望;在解(ii)的時(shí)候,就通過比較兩個(gè)期望的大小,得到結(jié)果.

詳解:(1)20件產(chǎn)品中恰有2件不合格品的概率為.因此

.

,得.當(dāng)時(shí),;當(dāng)時(shí),.

所以的最大值點(diǎn)為.

(2)由(1)知,.

(i)令表示余下的180件產(chǎn)品中的不合格品件數(shù),依題意知,,即.

所以.

(ii)如果對余下的產(chǎn)品作檢驗(yàn),則這一箱產(chǎn)品所需要的檢驗(yàn)費(fèi)為400.

由于,故應(yīng)該對余下的產(chǎn)品作檢驗(yàn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機(jī)構(gòu)對員工進(jìn)行專業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機(jī)構(gòu)費(fèi)用成本為12000元.公司每位員工的培訓(xùn)費(fèi)用按以下方式與該機(jī)構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過30人時(shí),每人的培訓(xùn)費(fèi)用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費(fèi)減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費(fèi)為元,培訓(xùn)機(jī)構(gòu)的利潤為元.

(1)寫出 之間的函數(shù)關(guān)系式;

(2)當(dāng)公司參加培訓(xùn)的員工為多少人時(shí),培訓(xùn)機(jī)構(gòu)可獲得最大利潤?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時(shí)間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對任意m∈N* , 將數(shù)列{an}中落入?yún)^(qū)間(9m , 92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm , 求數(shù)列{bm}的前m項(xiàng)和Sm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分別求適合下列條件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2-5ax+4a2<0(其中a>0),q:實(shí)數(shù)x滿足2<x≤5.

(1)若a=1,且pq為真,求實(shí)數(shù)x的取值范圍;

(2)若qp的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某安全生產(chǎn)監(jiān)督部門對5家小型煤礦進(jìn)行安全檢查(簡稱安檢).若安檢不合格,則必須整改.若整改后經(jīng)復(fù)查仍不合格,則強(qiáng)制關(guān)閉.設(shè)每家煤礦安檢是否合格是相互獨(dú)立的,且每家煤礦整改前安檢合格的概率是0.5,整改后安檢合格的概率是0.8.計(jì)算(結(jié)果精確到0.01):

(1)恰好有兩家煤礦必須整改的概率.

(2)平均有多少家煤礦必須整改?

(3)至少關(guān)閉一家煤礦的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時(shí),f(x)>1,且對任意的xy,有,f(1)2,.

1)求f(0)的值;

2)求證:對任意x,都有f(x)>0;

3)解不等式f(32x)>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某算法的程序框圖,則程序運(yùn)行后輸出的結(jié)果是

查看答案和解析>>

同步練習(xí)冊答案