【題目】某健身館在2019年7、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶.為預(yù)估2020年7、8兩月客戶投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了2019年7、8兩月100名客戶的消費(fèi)金額,分組如下:,,,…,(單位:元),得到如圖所示的頻率分布直方圖:
(1)請(qǐng)用抽樣的數(shù)據(jù)預(yù)估2020年7、8兩月健身客戶人均消費(fèi)的金額(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若把2019年7、8兩月健身消費(fèi)金額不低于800元的客戶,稱為“健身達(dá)人”,經(jīng)數(shù)據(jù)處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請(qǐng)補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“健身達(dá)人”與性別有關(guān)?
健身達(dá)人 | 非健身達(dá)人 | 總計(jì) | |
男 | 10 | ||
女 | 30 | ||
總計(jì) |
(3)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營(yíng)養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過(guò)800元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.
若某人打算購(gòu)買1000元的營(yíng)養(yǎng)品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
附:
0.100 | 0.050 | 0.010 | 0.005 | ||
2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)620元(2)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為“健身達(dá)人”與性別有關(guān)系,(3)選擇方案二更劃算
【解析】
(1)利用頻率分布直方圖計(jì)算平均數(shù)即可;
(2)根據(jù)題意補(bǔ)充列表聯(lián),由表中數(shù)據(jù)計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;
(3)分別計(jì)算選方案一、方案二所支付的金額,比較它們的大小即可.
(1)因?yàn)?/span>
(元),
所以,預(yù)估2020年7、8兩月份人均健身消費(fèi)為620元.
(2)列聯(lián)表如下:
健身達(dá)人 | 非健身達(dá)人 | 總計(jì) | |
男 | 10 | 40 | 50 |
女 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
因?yàn)?/span>,
因此有的把握認(rèn)為“健身達(dá)人”與性別有關(guān)系.
(3)若選擇方案一:則需付款900元;
若選擇方案二:設(shè)付款元,則可能取值為700,800,900,1000.
,
,
,
.
所以(元)
因?yàn)?/span>,所以選擇方案二更劃算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,且中的元素個(gè)數(shù)大于等于5.若集合中存在四個(gè)不同的元素,使得,則稱集合是“關(guān)聯(lián)的”,并稱集合是集合的“關(guān)聯(lián)子集”;若集合不存在“關(guān)聯(lián)子集”,則稱集合是“獨(dú)立的”.
分別判斷集合和集合是“關(guān)聯(lián)的”還是“獨(dú)立的”?若是“關(guān)聯(lián)的”,寫(xiě)出其所有的關(guān)聯(lián)子集;
已知集合是“關(guān)聯(lián)的”,且任取集合,總存在的關(guān)聯(lián)子集,使得.若,求證:是等差數(shù)列;
集合是“獨(dú)立的”,求證:存在,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)求證:當(dāng)時(shí),不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型:以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開(kāi)園區(qū)的人數(shù).設(shè)定以分鐘為一個(gè)計(jì)算單位,上午點(diǎn)分作為第個(gè)計(jì)算人數(shù)單位,即;點(diǎn)分作為第個(gè)計(jì)算單位,即;依次類推,把一天內(nèi)從上午點(diǎn)到晚上點(diǎn)分分成個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計(jì)算當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)、離開(kāi)園區(qū)的游客人數(shù)各為多少?
(2)假設(shè)當(dāng)日?qǐng)@區(qū)游客總?cè)藬?shù)達(dá)到或超過(guò)萬(wàn)時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天點(diǎn)(即)時(shí),園區(qū)總?cè)藬?shù)會(huì)達(dá)到最高,請(qǐng)問(wèn)當(dāng)日是否要采取限流措施?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線C:1(a>0,b>0)的左右焦點(diǎn)為F1,F2(|F1F2|=2c),以坐標(biāo)原點(diǎn)O為圓心,以c為半徑作圓A,圓A與雙曲線C的一個(gè)交點(diǎn)為P,若三角形F1PF2的面積為a2,則C的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線、與曲線分別相交于點(diǎn)、和、,我們將四邊形稱為曲線的內(nèi)接四邊形.
(1)若直線和將單位圓分成長(zhǎng)度相等的四段弧,求的值;
(2)若直線,與圓分別交于點(diǎn)、和、,求證:四邊形為正方形;
(3)求證:橢圓的內(nèi)接正方形有且只有一個(gè),并求該內(nèi)接正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,真命題是( )
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、是異面直線,、是異面直線,則、是異面直線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com