已知函數(shù)f(x)=
e
x
 
-mx+1
的圖象為曲線C,若曲線C存在與直線y=
1
2
x
垂直的切線,則實(shí)數(shù)m的取值范圍是( 。
A、m≤2
B、m>2
C、m≤
1
2
D、m>-
1
2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)函數(shù),利用曲線C存在與直線y=
1
2
x垂直的切線,可得f′(x)=ex-m=-2成立,即可確定實(shí)數(shù)m的取值范圍.
解答: 解:∵f(x)=ex-mx+1,
∴f′(x)=ex-m,
∵曲線C存在與直線y=
1
2
x垂直的切線,
∴f′(x)=ex-m=-2成立,
∴m=2+ex>2,
故選B.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,正確等價(jià)轉(zhuǎn)化是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+ax+3)ex(x∈R)在x=2處的切線的斜率為2e2
(1)求函數(shù)f(x)的解析式并求單調(diào)區(qū)間;
(2)設(shè)g(x)=
f′(x)
ex
,其中x∈[-2,m),問(wèn):對(duì)于任意的m>-2,方程g(x)=
2
3
(m-1)2
在區(qū)間(-2,m)上是否存在實(shí)數(shù)根?若存在,請(qǐng)確定實(shí)數(shù)根的個(gè)數(shù).若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是冪函數(shù),且滿足
f(9)
f(3)
=5
,則f(
1
3
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與直線x+
3
y-1=0垂直的直線的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a2+a3+a23+a24=48,則S25=( 。
A、100B、200
C、300D、400

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1+cos2α
sin2α
=
1
2
,則tan2α=(  )
A、
5
4
B、
4
3
C、-
5
4
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<k<4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則這個(gè)四邊形面積最小值時(shí)k值為( 。
A、2
B、
1
2
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=4x(1-x),則f(-
9
2
)
=( 。
A、1B、-1C、-63D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax的圖象經(jīng)過(guò)點(diǎn)(2,
1
4
)
,其中a>0且a≠1,
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g(x)=x
4a
5
,解關(guān)于t的不等式g(2t-1)<g(t+1).

查看答案和解析>>

同步練習(xí)冊(cè)答案