已知x1,x2∈[-
π
2
,
π
2
],且x1sinx1-x2sinx2<0,則下列結(jié)論正確的是(  )
A、x13<x23
B、x1+x2<0
C、|x1|>|x2|
D、|x1|<|x2|
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù)f(x)=xsinx是偶函數(shù),且在[0,
π
2
]上是增函數(shù)、在[-
π
2
0]上是減函數(shù),結(jié)合條件 x1sinx1<x2sinx2 ,可得結(jié)論.
解答: 解:由于函數(shù)f(x)=xsinx是偶函數(shù),且在[0,
π
2
]上是增函數(shù),故函數(shù)在[-
π
2
 0]上是減函數(shù).
∵x1sinx1-x2sinx2<0,∴x1sinx1<x2sinx2 ,∴|x1|<|x2|,
故選:D.
點(diǎn)評:本題主要考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)按圖所示的規(guī)律排序,則從2013到2015的箭頭方向依次為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是(  )
A、當(dāng)x>0,x≠1時,lgx+
1
lgx
≥2
B、當(dāng)x≥2時,x+
1
x
的最小值為2
C、當(dāng)x∈R時,x2+1>2x
D、當(dāng)x>0時,
x
+
1
x
的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an-3,則數(shù)列{an}的通項公式為( 。
A、an=
1,n=1
3-2n-1,n>1
B、an=3+(-2)n
C、an=3-2n
D、an=-3+2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在R的函數(shù),且f′(x)<f(x),則下列成立的關(guān)系為(  )
A、f(2)<e2f(0)
B、f(2)=e2f(0)
C、f(2)>e2f(0)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+y≤8
2y-x≤4
x≥0
y≥0
,則z=5y-x的最大值是(  )
A、16B、30C、24D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足對任意的m,n∈Z+都有f(m+n)=f(m)•f(n)且f(1)=2,則
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2011)
f(2010)
(  )
A、2011B、2010
C、4020D、4022

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作與x軸垂直的直線l交兩漸近線于A,B兩點(diǎn),與雙曲線的其中一個交點(diǎn)為P,若 
AP
=2
PB
,則該雙曲線的離心率為( 。
A、
3
2
2
B、
3
5
5
C、
3
2
4
D、
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,m,n,l為兩兩不重合的直線,給出下列命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β; 
其中真命題的個數(shù)是( 。
A、1B、2C、3

查看答案和解析>>

同步練習(xí)冊答案