設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有f(x)+xf′(x)<x,則不等式(x+2014)f(x+2014)+2f(-2)>0的解集為( 。
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.
解答: 解:由f(x)+xf′(x)<x,x<0,
即[xf(x)]′<x<0,
令F(x)=xf(x),
則當(dāng)x<0時(shí),F(xiàn)'(x)<0,
即F(x)在(-∞,0)上是減函數(shù),
F(x+2014)=(x+2014)f(x+2014),F(xiàn)(-2)=(-2)f(-2),
F(x+2014)-F(-2)>0,
∵F(x)在(-∞,0)是減函數(shù),
∴由F(x+2014)>F(-2)得,
∴x+2014<-2,
即x<-2016.
故選:C.
點(diǎn)評(píng):本題主要考查不等式的解法,利用條件構(gòu)造函數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2xcosx的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2-2x+y2-2my+2m-1=0,當(dāng)圓的面積最小時(shí),直線y=x+b與圓相切,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓9x2+25y2=225,若橢圓上有一點(diǎn)P到右焦點(diǎn)的距離是1,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(1,2)的直線與圓x2+y2+2x-6y+5=0相切,且與直線ax+y-1=0垂直,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列1,3,6,10,15,x,28中,x的值為( 。
A、17B、20
C、21D、以上都可以

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
cos10°
tan20°
+
3
sin10°•tan70°-2cos40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)分別為A(-2,1)、B(6,2),且BC邊的傾斜角為45°,AC邊的斜率為-
1
2

(1)根據(jù)題意畫出圖形;
(2)求BC邊上的高AH所在的直線方程;
(3)求AH的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1、x2為實(shí)系數(shù)一元二次方程ax2+bx+c=0的兩個(gè)虛根,且
x
2
1
x2
∈R,求
x1
x2
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案