【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)100名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
【答案】(1)5.4天;(2)表見解析,沒有95%的把握認為潛伏期與年齡有關(guān).
【解析】
(1)根據(jù)統(tǒng)計數(shù)據(jù)計算平均數(shù)即可;
(2)根據(jù)題意補充完整列聯(lián)表,計算K2,對照臨界值得出結(jié)論.
(1)根據(jù)統(tǒng)計數(shù)據(jù),計算平均數(shù)為:天
(2)根據(jù)題意,補充完整的列聯(lián)表如下:
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | 65 | 35 | 100 |
50歲以下 | 55 | 45 | 100 |
總計 | 120 | 80 | 200 |
則,經(jīng)查表,得,所以沒有95%的把握認為潛伏期與年齡有關(guān).
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系中,點,曲線的極坐標方程為,點在曲線上運動,以極點為坐標原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)。
(1)求直線的極坐標方程與曲線的參數(shù)方程;
(2)求線段的中點到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:的離心率為,且過點 (,),點 P 在第四象限, A 為左頂點, B 為上頂點, PA 交 y 軸于點 C,PB 交 x 軸于點 D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在各項均為正數(shù)的等比數(shù)列{an}中,,且a4+a5=6a3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{log2an}的前n項和為Sn,求Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與的關(guān)系;
(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學有學生500人,學校為了解學生的課外閱讀時間,從中隨機抽取了50名學生,獲得了他們某一個月課外閱讀時間的數(shù)據(jù)(單位:小時),將數(shù)據(jù)分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],整理得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的x的值;
(2)試估計該校所有學生中,課外閱讀時間不小于16小時的學生人數(shù);
(3)已知課外閱讀時間在[10,12)的樣本學生中有3名女生,現(xiàn)從閱讀時間在[10,12)的樣本學生中隨機抽取3人,記X為抽到女生的人數(shù),求X的分布列與數(shù)學期望E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱柱ABC—A1B1C1中,四邊形AA1B1B為矩形,平面AA1B1B⊥平面ABC,點E,F(xiàn)分別是側(cè)面AA1B1B,BB1C1C對角線的交點.
(1)求證:EF∥平面ABC;
(2)BB1⊥AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com