已知函數(shù)f(x)=
1
3x
,若f′(a)=-
16
3
,則a=
 
考點(diǎn):導(dǎo)數(shù)的乘法與除法法則
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),代入x=a得到-
1
3
a-
4
3
=-
16
3
,由此求得a的值.
解答: 解:∵f(x)=
1
3x
=x-
1
3
,
f(x)=-
1
3
x-
4
3
,則f′(a)=-
1
3
a-
4
3
=-
16
3
,
解得:a=
1
8

故答案為:
1
8
點(diǎn)評(píng):本題考查了基本初等函數(shù)的導(dǎo)數(shù)公式,考查了有理指數(shù)冪的運(yùn)算性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在(0,+∞)上的函數(shù)f(x),滿足f(xy)=f(x)+f(y),且f(
1
2
)=1,對(duì)于x,y∈(0,+∞),當(dāng)且僅當(dāng)x>y時(shí)f(x)<f(y).
(1)求f(1)的值;
(2)若f(-x)+f(3-x)≥-2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是以π為周期的偶函數(shù),且x∈[0,
π
2
]時(shí),f(x)=sin x-cosx.
(1)求當(dāng)x∈[
5
2
π,3π]時(shí)f(x)的解析式.
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)數(shù)a=0.22,b=log20.2,c=20.2,則a、b、c之間的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
sin(α-3π)cos(2π-α)•sin(-α+
3
2
π)
cos(-π-α)sin(-π-α)

(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值.
(3)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax+1-5的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是( 。
A、(1,-5)
B、(0,-5)
C、(-1,-5)
D、(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(-x)的圖象與函數(shù)y=f(4+x)的圖象關(guān)于( 。
A、x=4對(duì)稱
B、x=-4對(duì)稱
C、x=2對(duì)稱
D、x=-2對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足條件
x-y+5≥0
x+y≥0
x≤3
,則x-2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域是{x|x≠0,x∈R},對(duì)定義域內(nèi)任意x1,x2都有f(x1x2)=f(x1)+f(x2),且當(dāng)x>1時(shí)f(x)>0,f(2)=1;
(1)求f(1)、f(-1);
(2)求證:f(x)是偶函數(shù);
(3)求證:f(x)在(0,+∞)是增函數(shù);
(4)解不等式f(x2-2x+1)<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案