若橢圓C1
x2
a12
+
y2
b12
=1(a1>b1>0)和橢圓C2
x2
a22
+
y2
b22
=1(a2>b2>0)的離心率相同,且a1>a2,給出如下四個(gè)結(jié)論:
①橢圓C1和橢圓C2一定沒有公共點(diǎn);②
a1
a2
=
b1
b2
;③a12-a22<b12-b22;④a1-a2<b1-b2
則所有結(jié)論正確的序號(hào)是
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先根據(jù)離心率相等可以進(jìn)行恒等變換得到:②成立,同時(shí)得到a12-b12=a22-b22③不成立,①成立,最后利用(a1+b1)(a1-b1)=(a2+b2)(a2-b2)得到④成立.
解答: 解:橢圓C1
x2
a12
+
y2
b12
=1(a1>b1>0)和橢圓C2
x2
a22
+
y2
b22
=1(a2>b2>0)的離心率相同,
所以:a12-b12=a22-b22,
進(jìn)一步轉(zhuǎn)化為:a12-a22=b12-b22,
由于a1>a2所以b1>b2
所以:①成立,
c1
a1
=
c2
a2
,
經(jīng)過變換和合比性質(zhì)得到:
a1
a2
=
b1
b2

所以:②成立.
a12-b12=a22-b22,所以:(a1+b1)(a1-b1)=(a2+b2)(a2-b2),
進(jìn)一步得到:a1-a2<b1-b2,故④成立.
故答案為:①②④.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):橢圓的性質(zhì)的應(yīng)用,不等式的應(yīng)用,合比性質(zhì)的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足f(x+2)=-f(x),若f(2)=-lg2,f(3)=lg5則f(2014)-f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
21-x,x≤1
1-log2x,x>1
,則f[f(4)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|-7<x<3},集合B={x|1<x<7},則A∪B=( 。
A、{x|-7<x<7}
B、{x|1<x<7}
C、{x|-7<x<3}
D、{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是x軸上的兩點(diǎn),點(diǎn)p的橫坐標(biāo)為3,且|PA|=|PB|,若直線PA的方程為x-2y+1=0,則直線PB的方程是(  )
A、2x+y+4=0
B、2x+y-7=0
C、x-2y+4=0
D、x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=
5
6
2
,B=45°,C=60°.
(1)求AC的長(zhǎng);
(2)延長(zhǎng)BC到D,使CD=3,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,△PAD為正三角形,且E,F(xiàn)分別為AD,AB的中點(diǎn),PE⊥平面ABCD,BE⊥平面PAD.
(Ⅰ)求證:BC⊥平面PEB;
(Ⅱ)求EF與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,直線l過點(diǎn)(0,1).
(1)若k=4,求拋物線到直線l距離最近的點(diǎn)的坐標(biāo);
(2)若直線l與拋物線C相交于A、B兩點(diǎn),且OA⊥OB,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=a2x-2(a>0,a≠1)的圖象恒過點(diǎn)A,若直線l:mx+ny-1=0經(jīng)過點(diǎn)A,則坐標(biāo)原點(diǎn)O到直線l的距離的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案