若O是A、B、P三點(diǎn)所在直線外一點(diǎn),且滿足條件:
OP
=a1
OA
+a4021
OB
,其中{an}為等差數(shù)列,則a2011等于( 。
A、-
1
2
B、1
C、
1
2
D、-1
考點(diǎn):等差數(shù)列的性質(zhì),平面向量的基本定理及其意義
專題:等差數(shù)列與等比數(shù)列,平面向量及應(yīng)用
分析:由平面向量的基本定理得出a1+a4021=1,再由等差數(shù)列的性質(zhì)求出a2011
解答: 解:∵A.B.P三點(diǎn)在一直線上,且
OP
=a1
OA
+a4021
OB
,
由平面向量的基本定理得,
a1+a4021=1;
又∵{an}為等差數(shù)列,
∴a1+a4021=2a2011,
∴a2011=
1
2

故選:C.
點(diǎn)評(píng):本題考查了平面向量的基本定理應(yīng)用問題,也考查了等差數(shù)列的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)
a
=
2
BC
|
BC
|
,
b
=
3
CA
|
CA
|
,
c
=
4
AB
|
AB
|
.若表示
a
b
、
c
的有向線段首尾相連能構(gòu)成三角形,則△ABC的形狀是( 。
A、等腰三角形
B、直角三角形
C、鈍角三角形
D、銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ln(1+x)
x

(Ⅰ)證明:若x≥1,則 f(x)≤ln2;
(Ⅱ)如果對(duì)于任意x>0,f(x)>1+px恒成立,求p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+k(A>0,ω>0,|φ|<
π
2
),在同一周期內(nèi)的最高點(diǎn)是(2,2),最低點(diǎn)是(8,-4),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在焦點(diǎn)分別為F1、F2的雙曲線上有一點(diǎn)P,若∠F1PF2=
π
2
,|PF2|=2|PF1|,則該雙曲線的離心率等于(  )
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=k•cosx的圖象過點(diǎn)P(
π
3
,1),則該函數(shù)圖象在P點(diǎn)處的切線斜率等于( 。
A、1
B、-
3
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式(a-a2)(x2+1)十x≤0對(duì)x∈(0,2]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則cos2α-sin2α=
 
;sin2α-2sinαcosα+2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“a,b都是偶數(shù),則a與b的和是偶數(shù)”的逆否命題是( 。
A、a與b的和是偶數(shù),則a,b都是偶數(shù)
B、a與b的和不是偶數(shù),則a,b都不是偶數(shù)
C、a,b不都是偶數(shù),則a與b的和不是偶數(shù)
D、a與b的和不是偶數(shù),則a,b不都是偶數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案