【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。
(1)求橢圓的方程;
(2)求的面積。
【答案】(1)(2)
【解析】
試題分析:(1)根據(jù)橢圓的簡單幾何性質(zhì)知,又,寫出橢圓的方程;(2)先斜截式設(shè)出直線,聯(lián)立方程組,根據(jù)直線與圓錐曲線的位置關(guān)系,可得出中點為的坐標,再根據(jù)△為等腰三角形知,從而得的斜率為,求出,寫出:,并計算,再根據(jù)點到直線距離公式求高,即可計算出面積.
試題解析:(1)由已知得,,解得,又,
所以橢圓的方程為.
(2)設(shè)直線的方程為,
由得①
設(shè)、的坐標分別為,(),中點為,
則,,
因為是等腰△的底邊,所以.
所以的斜率為,解得,此時方程①為.
解得,,所以,,所以,
此時,點到直線:的距離,
所以△的面積.
科目:高中數(shù)學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量,獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格1:4.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為X。若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望 E(X) 和方差 D(X) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面幾何中,可以得出正確結(jié)論:“正三角形的內(nèi)切圓半徑等于這個正三角形的高的.”拓展到空間中,類比平面幾何的上述結(jié)論,則正四面體的內(nèi)切球半徑等于這個正四面體的高的( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當x∈[0, ]時,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()
A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,a3=7,S9=27.
(1)求數(shù)列{an}的通項公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com