已知
OA
=
a
,
OB
=
b
,且|
a
|=|
b
|=4,∠AOB=60°,則|
a
+
b
|=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義及其運(yùn)算性質(zhì)即可得出.
解答: 解:∵|
a
|=|
b
|=4,∠AOB=60°,∴
a
b
=4×4×cos60°=8.
∴|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
42+42+2×8
=4
3

故答案為:4
3
點(diǎn)評(píng):本題考查了數(shù)量積的定義及其運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-a(x+1)ln(x+1).
(Ⅰ)當(dāng)a>0時(shí),求f(x)的極值點(diǎn);
(Ⅱ)當(dāng)a=1時(shí),若方程f(x)=t在[-
1
2
,1]上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
1
2
,α∈[0,2π],則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(x-
π
3
)在[π,2π]上的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(-
π
3
x+
π
4
)的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿(mǎn)足f(0)=0,f(x)+f(1-x)=1,f(5x)=2f(x),且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f(
3
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖偽代碼,則輸出的a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若θ=-7,則角θ的終邊在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>3,則方程x3-ax2+1=0在(0,2)上的實(shí)根個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案