若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實(shí)數(shù),使得函數(shù)是上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052503302704683458/SYS201205250333126250470731_DA.files/image001.png">是上的正函數(shù),且在上單調(diào)遞增,
所以當(dāng)時(shí), 即 ……………………………3分
解得,
故函數(shù)的“等域區(qū)間”為;……………………………………………5分
(2)因?yàn)楹瘮?shù)是上的減函數(shù),
所以當(dāng)時(shí),即………………………………7分
兩式相減得,即, ……………………………………9分
代入得,
由,且
得, …………………………………………11分
故關(guān)于的方程在區(qū)間內(nèi)有實(shí)數(shù)解,……………………13分
記,
則
解得.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三第一學(xué)期第二次階段考試數(shù)學(xué) 題型:填空題
若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的值域恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間.如果函數(shù)是上的正函數(shù),則實(shí)數(shù)的取值范圍 ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三元月雙周練習(xí)數(shù)學(xué)試卷 題型:填空題
若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的值域恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間.如果函數(shù)是上的正函數(shù),則實(shí)數(shù)的取值范圍為 ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實(shí)數(shù),使得函數(shù)是上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實(shí)數(shù),使得函數(shù)是上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com