已知函數(shù)f(x)=x2+ax+6.
(1)解不等式f(x)<0;
(2)若不等式f(x)>0對(duì)x<0恒成立,求a的范圍.
考點(diǎn):函數(shù)恒成立問題,二次函數(shù)的性質(zhì)
專題:綜合題,不等式的解法及應(yīng)用
分析:(1)分△≤0,△>0兩種情況進(jìn)行討論,結(jié)合二次函數(shù)的圖象可得解集;
(2)分離出參數(shù)a后化為函數(shù)最值即可,利用基本不等式可求函數(shù)的最小值;
解答: 解:(1)f(x)<0即x2+ax+6<0,
△=a2-24,
當(dāng)△≤0,即a≤-2
6
或a≥2
6
時(shí),解集為∅;
當(dāng)△>0即-2
6
<a<2
6
時(shí),方程f(x)=0的根為x1,2=
-a±
a2-24
2

f(x)<0的解集為:{x|
-a-
a2-24
2
<a<
-a+
a2-24
2
}.
綜上,當(dāng)a≤-2
6
或a≥2
6
時(shí),不等式的解集為∅;當(dāng)-2
6
<a<2
6
時(shí),不等式的解集為{x|
-a-
a2-24
2
<a<
-a+
a2-24
2
}.
(2)f(x)>0即x2+ax+6>0恒成立,
當(dāng)x<0時(shí),可化為a<-x-
6
x

而-x-
6
x
≥2
(-x)•(
6
-x
)
=2
6
,當(dāng)且僅當(dāng)x=-
6
時(shí)取等號(hào),
∴a<2
6
點(diǎn)評(píng):該題考查函數(shù)恒成立、二次不等式的解法,考查分類討論思想,深刻理解“三個(gè)二次”間的關(guān)系是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2lnx
x
(x>0)
(1)求函數(shù)y=f(x)在x=
1
e
處的切線的斜率;
(2)求函數(shù)y=f(x)的最大值;
(3)設(shè)a>0,求函數(shù)h(x)=af(x)在[a,2a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=x-m2+m+2(m∈Z)在(0,+∞)上單調(diào)遞增.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)-ax+1,a為實(shí)常數(shù),求g(x)在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取15名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計(jì)
反感 5
不反感 4
合計(jì) 15
已知在這15人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(1)請將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料判斷是否能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為反感“中國式過馬路”與性別有關(guān)?
(2)若從這些不反感的人中隨機(jī)抽取4人,要求女性人數(shù)不少于男性人數(shù),并設(shè)女性人數(shù)為隨機(jī)變量ξ,求ξ的所有取值和相應(yīng)的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中 n=a+b+c+d
p(K2,k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列.
(1)計(jì)算S1,S2,S3的值;
(2)猜想Sn的表達(dá)式,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(2x+φ)+1的(-π<ϕ<0)的圖象的一條對(duì)稱軸是直線x=
π
8

(1)求φ的值;
(2)求y=f(x)的增區(qū)間;
(3)證明直線5x-2y+c=0與函數(shù)y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正四面體ABCD中,E為AD中點(diǎn),F(xiàn)為BC中點(diǎn),
(1)求異面直線AB與CE所成角的大小;
(2)求異面直線AF與CE所成角的大;
(3)求直線CE與平面BCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線C1:y=x2與曲線C2:y=aex(a>0)存在公共切線,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=2,b=
7
,B=60°,則△ABC的面積為
 

查看答案和解析>>

同步練習(xí)冊答案