已知數(shù)列{an}的前n項(xiàng)和為Sn=2-(
2
n
+1)an(n∈N+).
(Ⅰ)求證:數(shù)列{
an
n
}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{2n+1an+1}的前n項(xiàng)和為Tn,求
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
考點(diǎn):數(shù)列的求和,等比關(guān)系的確定
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)再寫(xiě)一式,兩式相減,即可證明數(shù)列{
an
n
}是等比數(shù)列;
(Ⅱ)求出數(shù)列{2n+1an+1}的前n項(xiàng)和為Tn,利用裂項(xiàng)法求
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
解答: (Ⅰ)證明:∵Sn=2-(
2
n
+1)an,
∴n≥2時(shí),Sn-1=2-(
2
n-1
+1)an-1,
兩式相減,整理可得
an
n
=
1
2
an-1
n-1
,
n=1時(shí),a1=
1
2
,
∴數(shù)列{
an
n
}是以
1
2
為首項(xiàng),
1
2
為公比的等比數(shù)列;
(Ⅱ)解:由(Ⅰ)知
an
n
=
1
2n

∴2n+1an+1=2n+1,
∴Tn=
n(3+2n+1)
2
=n(n+2),
1
Tn
=
1
2
1
n
-
1
n+2
),
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
2n+3
2(n+1)(n+2)
點(diǎn)評(píng):本題考查等比數(shù)列的證明,考查數(shù)列的求和,考查裂項(xiàng)法的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的橢圓
x2
a2
+
y2
b2
=1(a>b>0),其長(zhǎng)軸長(zhǎng)為4,且點(diǎn)(1,
3
2
)在該橢圓上.直線l:x=my+1與橢圓交于不同的兩點(diǎn)A,B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=kx(k>0)與橢圓交于不同的兩點(diǎn)C,D,當(dāng)m=-1時(shí),求四邊形ABCD 面積的最大值;
(3)在x軸上是否存在點(diǎn)M,使得直線MA與直線MB的斜率之積為定值.若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD中,AD=2,CD=
2
,∠ABC=45°,AE⊥BC,垂足為E,沿直線AE將△BAE翻拆成△B1AE,使得平面B1AE⊥平面AECD,連接B1D,P是線段B1D上的點(diǎn),且滿足
B1P
B1D

(Ⅰ)λ=
1
2
時(shí),求證CP⊥平面AB1D;
(Ⅱ)若平面AB1E與平面PAC所成的二面角的余弦值為
11
11
,求AP與平面AB1E所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某水庫(kù)進(jìn)入汛期后的水位升高量h(n)(單位:標(biāo)高)與進(jìn)入訊期的天數(shù)n的關(guān)系是h(n)=20
5m2+6n
,汛期共計(jì)40天,剛進(jìn)入汛期時(shí)水庫(kù)水位為220(標(biāo)高),而水庫(kù)警戒線水位是400(標(biāo)高),水庫(kù)共有水閘15個(gè),每開(kāi)啟一個(gè)泄洪,一天可使水庫(kù)的水位下降4(標(biāo)高).
(1)若不開(kāi)啟水閘泄洪,這個(gè)汛期水庫(kù)是否有危險(xiǎn)?若有危險(xiǎn),將發(fā)生在第幾天?
(2)若要保證水庫(kù)安全,則在進(jìn)入訊期的第一天起每天開(kāi)啟p個(gè)水閘泄洪,求p的最小值.
(參考數(shù)據(jù):2.272≈5.15,2.312≈5.34)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-sin2x
cosx

(1)求f(x)的定義域、f(
π
6
)的值;
(2)設(shè)α是第二象限的角,且tanα=-
4
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩座建筑物AB,CD的底部在同一個(gè)水平面上,且均與水平面垂直,他們的高度分別是12m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=45°.
(Ⅰ)求BC的長(zhǎng)度;
(Ⅱ)在線段AB上取一點(diǎn)P,從點(diǎn)P看建筑物CD的視角為∠CPD,問(wèn)點(diǎn)P在何處時(shí),∠CPD最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)為1,若點(diǎn)E是AB邊上的動(dòng)點(diǎn),則
DE
DC
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
2
x
n的展開(kāi)式中(只有)第6項(xiàng)的二項(xiàng)式系數(shù)最大,求展開(kāi)式中的第4項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)三角函數(shù)可由正弦曲線y=sinx先向右平移三個(gè)單位長(zhǎng)度,再將其圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的兩倍而得到,則這個(gè)函數(shù)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案