方程x2-3x+2=0的兩個(gè)根可分別作為(  )
A、一橢圓和一雙曲線的離心率
B、一雙曲線和一拋物線的離心率
C、兩橢圓的離心率
D、一橢圓和一拋物線的離心率
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì),拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:解方程x2-3x+2=0可得,其兩根為2與1,由圓錐曲線離心率的范圍,分析選項(xiàng)可得答案.
解答: 解:解方程x2-3x+2=0可得,其兩根為2與1,
∵雙曲線的離心率大于1,拋物線的離心率等于1,
∴分析選項(xiàng)可得,B符合;
故選:B.
點(diǎn)評(píng):本題考查圓錐曲線的離心率的范圍,橢圓的離心率為大于0小于1的常數(shù),雙曲線的離心率大于1,拋物線的離心率等于1,是必須牢記的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
2+λ
-
y2
1+λ
=1表示雙曲線,則λ的取值范圍是( 。
A、λ>-1
B、λ<-2
C、-2<λ<-1
D、λ>-1或λ<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)值域是R+的是(  )
A、y=(
1
3
)1-x
B、y=5
1
2-x
C、y=
0.5x-1
D、y=
1-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)1+
1
i
所對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果
a
,
b
是兩個(gè)單位向量,下列四個(gè)結(jié)論中正確的是(  )
A、
a
=
b
B、
a
b
=1
C、
a
2
b
2
D、|
a
|2=|
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
5
-
y2
4
=1的右焦點(diǎn),點(diǎn)P在雙曲線上,點(diǎn)Q在圓(x-8)2+(y-2)2=1上,則|PF|+|PQ|的最小值為( 。
A、3
5
-1
B、
5
+1
C、5
5
-1
D、7
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2+2x-4y+1=0關(guān)于直線2ax-by+2=0(a,b∈R)對(duì)稱,則a2+b2的取值范圍是( 。
A、(-∞,
1
4
]
B、[
1
2
,+∞)
C、(-
1
4
,0)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列式子中,正確的是( 。
A、R+∈R
B、Z-?{x|x≤0,x∈Z}
C、空集是任何集合的真子集
D、∅∈{∅}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中為真命題的是(  )
A、若m<1,則方程x2-2x+m=0無實(shí)數(shù)根
B、“矩形的兩條對(duì)角線相等”的逆命題
C、“若x2+y2=0,則x,y全為0”的否命題
D、“若a<b,則am2<bm2”的逆否命題

查看答案和解析>>

同步練習(xí)冊(cè)答案